On a Class of Implicit–Explicit Runge–Kutta Schemes for Stiff Kinetic Equations Preserving the Navier–Stokes Limit

Implicit–explicit (IMEX) Runge–Kutta (RK) schemes are popular high order time discretization methods for solving stiff kinetic equations. As opposed to the compressible Euler limit (leading order asymptotics of the Boltzmann equation as the Knudsen number $$\varepsilon $$ε goes to zero), their asymptotic behavior at the Navier–Stokes (NS) level (next order asymptotics) was rarely studied. In this paper, we analyze a class of existing IMEX RK schemes and show that, under suitable initial conditions, they can capture the NS limit without resolving the small parameter $$\varepsilon $$ε, i.e., $$\varepsilon =o(\Delta t)$$ε=o(Δt), $$\Delta t^m=o(\varepsilon )$$Δtm=o(ε), where m is the order of the explicit RK part in the IMEX scheme. Extensive numerical tests for BGK and ES-BGK models are performed to verify our theoretical results.

[1]  Qin Li,et al.  Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations , 2017 .

[2]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[3]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[4]  B. Perthame,et al.  The Gaussian-BGK model of Boltzmann equation with small Prandtl number , 2000 .

[5]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[6]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[7]  Giacomo Dimarco,et al.  Implicit-Explicit Linear Multistep Methods for Stiff Kinetic Equations , 2016, SIAM J. Numer. Anal..

[8]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[9]  Vittorio Romano,et al.  Central Schemes for Balance Laws of Relaxation Type , 2000, SIAM J. Numer. Anal..

[10]  Lorenzo Pareschi,et al.  On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws , 2017, J. Comput. Appl. Math..

[11]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[12]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[13]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations , 2017, J. Comput. Phys..

[14]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[15]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[16]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[17]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[18]  Lowell H. Holway,et al.  Kinetic Theory of Shock Structure Using an Ellipsoidal Distribution Function , 1965 .

[19]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[20]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[21]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[22]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[23]  Giacomo Dimarco,et al.  Asymptotic Preserving Implicit-Explicit Runge-Kutta Methods for Nonlinear Kinetic Equations , 2012, SIAM J. Numer. Anal..

[24]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[25]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[26]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[27]  Tao Xiong,et al.  High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation , 2014, J. Comput. Phys..

[28]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[29]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[30]  Shi Jin,et al.  An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation , 2010, J. Sci. Comput..