Comparative Analysis of Present and Future Space-Grade Processors with Device Metrics

Due to harsh and inaccessible operating environments, space computing presents many unique challenges and constraints that limit onboard computing performance. However, the increasing need for real...

[1]  Ramon-Chips SURVEY OF PROCESSORS FOR SPACE , 2013 .

[2]  P. Dodd,et al.  Radiation effects in SOI technologies , 2003 .

[3]  M. Xapsos,et al.  The Near-Earth Space Radiation Environment , 2008, IEEE Transactions on Nuclear Science.

[4]  Joe Marshall,et al.  Quad-core radiation-hardened system-on-chip power architecture processor , 2015, 2015 IEEE Aerospace Conference.

[5]  Jan Andersson,et al.  GR740: Rad-Hard Quad-Core LEON4FT System-on-Chip , 2015 .

[6]  Alan R. Jones,et al.  Fast Fourier Transform , 1970, SIGP.

[7]  S. Habinc,et al.  DEVELOPMENT OF A FUNCTIONAL PROTOTYPE OF THE QUAD CORE NGMP SPACE PROCESSOR , 2012 .

[8]  Robert Baumann,et al.  Soft errors in advanced computer systems , 2005, IEEE Design & Test of Computers.

[9]  Jinwoo Suh,et al.  Implementation of kernels on the Maestro processor , 2013, 2013 IEEE Aerospace Conference.

[10]  R. Berger,et al.  Applying a high performance tiled rad-hard digital signal processor to spaceborne applications , 2012, 2012 IEEE Aerospace Conference.

[11]  Herman Lam,et al.  Comparative analysis of HPC and accelerator devices: Computation, memory, I/O, and power , 2010, 2010 FOURTH INTERNATIONAL WORKSHOP ON HIGH-PERFORMANCE RECONFIGURABLE COMPUTING TECHNOLOGY AND APPLICATIONS (HPRCTA).

[12]  Ran Ginosar,et al.  RC64: High performance rad-hard manycore , 2016, 2016 IEEE Aerospace Conference.

[13]  Alan D. George,et al.  Optimizing FPGA Performance, Power, and Dependability with Linear Programming , 2017, ACM Trans. Reconfigurable Technol. Syst..

[14]  Alan D. George,et al.  Characterization of Fixed and Reconfigurable Multi-Core Devices for Application Acceleration , 2010, TRETS.

[15]  Ran Ginosar,et al.  RC64, a Rad-Hard Many-Core High-Performance DSP for Space Applications , 2014 .

[16]  Ethan H. Cannon,et al.  A method for efficient Radiation Hardening of multicore processors , 2015, 2015 IEEE Aerospace Conference.

[17]  Joseph R. Marshall Emergence of a High Performance Tiled Rad-Hard Digital Signal Processor for Spaceborne Applications , 2013 .

[18]  Alan D. George,et al.  A Framework for Evaluating and Optimizing FPGA-Based SoCs for Aerospace Computing , 2016, ACM Trans. Reconfigurable Technol. Syst..

[19]  S. Matsuda,et al.  Hardness-by-design approach for 0.15 /spl mu/m fully depleted CMOS/SOI digital logic devices with enhanced SEU/SET immunity , 2005, IEEE Transactions on Nuclear Science.

[20]  Carlos Villalpando,et al.  Reliable multicore processors for NASA space missions , 2011, 2011 Aerospace Conference.

[21]  S. Crago,et al.  The Maestro Flight Experiment: A 49-core radiation hardened processor in space , 2016, 2016 IEEE Aerospace Conference.

[22]  Eric Trappier,et al.  The Aerospace and Defence Industries Association of Europe , 2015 .

[23]  R. Koga,et al.  Application of hardness-by-design methodology to radiation-tolerant ASIC technologies , 2000 .

[24]  Alan D. George,et al.  A framework to analyze processor architectures for next-generation on-board space computing , 2014, 2014 IEEE Aerospace Conference.

[25]  No License,et al.  Intel ® 64 and IA-32 Architectures Software Developer ’ s Manual Volume 3 A : System Programming Guide , Part 1 , 2006 .

[26]  J. Barth,et al.  Space, atmospheric, and terrestrial radiation environments , 2003 .

[27]  O. Faynot,et al.  Radiation effects in advanced SOI devices: New insights into Total Ionizing Dose and Single-Event Effects , 2013, 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[28]  Bobbi Jo Broxson The Kronecker Product , 2006 .

[29]  Michael Johnson,et al.  Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing , 2013 .

[30]  Yuval Filmus Matrix Multiplication I , 2012 .