Ising universality in three dimensions: a Monte Carlo study

We investigate three Ising models on the simple cubic lattice by means of Monte Carlo methods and finite-size scaling. These models are the spin-1/2 Ising model with nearest-neighbour interactions, a spin-1/2 model with nearest-neighbour and third-neighbour interactions, and a spin-1 model with nearest-neighbour interactions. The results are in accurate agreement with the hypothesis of universality. Analysis of the finite-size scaling behaviour reveals corrections beyond those caused by the leading irrelevant scaling field. We find that the correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbour interactions or a third spin state. In a spin-1 Ising model, these corrections appear to be very small. This is very helpful for the determination of the universal constants of the Ising model. The renormalization exponents of the Ising model are determined as yt=1.587 (2), yh=2.4815 (15) and yi=-0.82 (6). The universal ratio Q=(m2)2/(m4) is equal to 0.6233 (4) for periodic systems with cubic symmetry. The critical point of the nearest-neighbour spin-1/2 model is Kc=0.2216546 (10).

[1]  T. Bose,et al.  Dielectric-constant anomaly near the consolute point of a binary mixture: Nitrobenzene-isooctane , 1982 .

[2]  N. Kuwahara,et al.  Dynamics of concentration fluctuations for butylcellosolve in water , 1985 .

[3]  Berg,et al.  Ising-model Monte Carlo simulations: Density of states and mass gap. , 1990, Physical review. B, Condensed matter.

[4]  W. Wagner,et al.  The thermal behaviour of pure fluid substances in the critical region — experiences from recent pϱT measurements on SF6 with a multi-cell apparatus , 1992 .

[5]  B. Nickel Confluent singularities in 3D continuum Φ4 theory: resolving critical point discrepancies , 1991 .

[6]  Pearson,et al.  Finite-size scaling in the three-dimensional Ising model. , 1985, Physical review. B, Condensed matter.

[7]  Critical exponent β of U3P4 , 1993 .

[8]  É. Brézin An Investigation of Finite Size Scaling , 1982 .

[9]  Joan Adler,et al.  Critical temperatures of the d=3, s= 1 / 2 Ising model; the effect of confluent corrections to scaling , 1983 .

[10]  P. Damay,et al.  Critical scattering function in a binary fluid mixture: A study of sodium-deuteroammonia solution at the critical concentration by small-angle neutron scattering. , 1989, Physical review. B, Condensed matter.

[11]  M. Uematsu,et al.  Precise measurements of critical parameters of sulfur hexafluoride by laser interferometry , 1986 .

[12]  M. Kim,et al.  CRITICAL-BEHAVIOR OF A MICRO-EMULSION , 1981 .

[13]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[14]  M. Suzuki,et al.  Monte Carlo Study of the Spontaneous Magnetization of the Three-Dimensional Ising Model , 1991 .

[15]  Wolff Lattice field theory as a percolation process. , 1988, Physical review letters.

[16]  D. Cannell,et al.  Corrections to scaling in the susceptibility of xenon , 1981 .

[17]  D. Roux,et al.  Light scattering study of the critical behaviour in a ternary microemulsion system , 1984 .

[18]  de Bruyn JR,et al.  Critical behavior of hydrogen. , 1989, Physical review. B, Condensed matter.

[19]  J. Thoen,et al.  The specific heat anomaly in some ternary liquid mixtures near a critical solution point , 1981 .

[20]  A. Compagner,et al.  A special-purpose processor for the Monte Carlo simulation of ising spin systems , 1983 .

[21]  A. Compagner,et al.  Monte Carlo renormalization of the three-dimensional Ising model , 1989 .

[22]  W. Kleemann,et al.  Critical behaviour of the linear and non-linear magnetic susceptibilities of FeCl2 , 1995 .

[23]  H. R. Krishnamurthy,et al.  Equilibrium Critical Phenomena in Binary Liquid Mixtures , 1983 .

[24]  A. Rosengren On the combinatorial solution of the Ising model , 1986 .

[25]  M. Uematsu,et al.  Measurements of the Vapor-Liquid Coexistence Curve for the Binary R12 + R22 System in the Critical Region , 1984 .

[26]  H. Aoyama,et al.  Vapor-liquid coexistence curves in the critical region and the critical temperatures and densities of difluoromethane and pentafluoroethane , 1995 .

[27]  Perrot,et al.  Critical behavior of the binary fluids cyclohexane-methanol, deuterated cyclohexane-methanol and of their isodensity mixture: Application to microgravity simulations and wetting phenomena. , 1985, Physical review. A, General physics.

[28]  J. Steijger,et al.  Crossover in the critical behaviour of the Ising antiferromagnet MnCl2·4 H2O in transverse field , 1983 .

[29]  Masuo Suzuki Static and Dynamic Finite-Size Scaling Theory Based on the Renormalization Group Approach , 1977 .

[30]  P. Nordblad,et al.  Determination of the critical exponent β from measurements of a weak spontaneous magnetisation in the 3d Ising antiferromagnet FeF2 , 1994 .

[31]  D. Meiron,et al.  Critical Indices from Perturbation Analysis of the Callan-Symanzik Equation , 1978 .

[32]  A. Weiss,et al.  1H and 2H NMR Studies of Mixtures 2,6-Lutidine/Water Near the Lower Critical Solution Point , 1992 .

[33]  S. C. Greer,et al.  Analysis of the coexistence curve of Na+NH3 , 1981 .

[34]  F. Livet The Cluster Updating Monte Carlo Algorithm Applied to the 3d Ising Problem , 1991 .

[35]  F. Leclercq,et al.  A precise determination of the critical index η by Small Angle Neutron Scattering (SANS) , 1989 .

[36]  Jacobs Turbidity in the binary fluid mixture methanol-cyclohexane. , 1986, Physical review. A, General physics.

[37]  W. Schröer,et al.  Light-scattering investigations of the liquid-liquid phase transition of the ionic system: Trimethylethyl-ammonium bromide in chloroform , 1994 .

[38]  K. Binder Finite size scaling analysis of ising model block distribution functions , 1981 .

[39]  Alan M. Ferrenberg,et al.  Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study. , 1991, Physical review. B, Condensed matter.

[40]  E. Gopal,et al.  Coexistence curve of acetonitrile and cyclohexane liquid system , 1986 .

[41]  I. Abdulagatov,et al.  Measurements of the isochoric heat capacities Cv of carbon dioxide in the critical region , 1994 .

[42]  S. Biswas,et al.  Determination of the coexistence curve of sulfur hexafluoride from isochoric intercepts , 1989 .

[43]  J. Zinn-Justin,et al.  Accurate critical exponents for Ising like systems in non-integer dimensions , 1987 .

[44]  Gupta,et al.  Monte Carlo renormalization-group study of the three-dimensional Ising model. , 1992, Physical review. B, Condensed matter.

[45]  A. Hoogland,et al.  The Delft Ising system processor , 1988 .

[46]  Sow-Hsin Chen,et al.  Critical behavior of a microemulsion studied by small-angle neutron scattering , 1983 .

[47]  A. Compagner,et al.  Smooth finite-size behaviour of the three-dimensional Ising model , 1985 .

[48]  M. W. Pestak,et al.  Equation of state ofN2and Ne near their critical points. Scaling, corrections to scaling, and amplitude ratios , 1984 .

[49]  B. Derrida,et al.  A combination of Monte Carlo and transfer matrix methods to study 2D and 3D percolation , 1985 .

[50]  P. Nordblad,et al.  Critical behavior in anisotropic antiferromagnets , 1983 .

[51]  D. T. Jacobs Coexistence curve of a nonpolar binary fluid mixture. Perfluoroheptane-carbon tetrachloride , 1982 .

[52]  J. Heringa,et al.  New Primitive Trinomials Of Mersenne-Exponent Degrees For Random-Number Generation , 1992 .

[53]  V. Skripov,et al.  The spinodal approximation by the method of scattering of light in (n-hexane + n-tetradecafluorohexane) , 1984 .

[54]  E. Kaler,et al.  Effects of isotopic substitution on the critical behavior of aqueous solutions of n‐dodecylhexaoxyethylene glycol monoether (C12E6) , 1989 .

[55]  H. Blöte,et al.  Finite-size calculations on the three-dimensional Ising model , 1993 .

[56]  Rubió,et al.  Coexistence curve of methanol+n-heptane: Range of simple scaling and critical amplitudes. , 1990, Physical review. B, Condensed matter.

[57]  Michael E. Fisher,et al.  Renormalization of Critical Exponents by Hidden Variables , 1968 .

[58]  B. Thijsse The dielectric constant of SF6 near the critical point , 1981 .

[59]  S. Rzoska,et al.  An isothermic coexistence curve in the nitrobenzene–decane–benzene solution , 1989 .

[60]  Rajiv R. P. Singh,et al.  The effect of H/D substitution and pressure on the liquid–liquid equilibrium between cyclohexane and methanol , 1987 .

[61]  D. Beysens,et al.  Coexistence curve of a three‐component microemulsion by a gradient method , 1993 .

[62]  E. Kaler,et al.  Statics and dynamics of concentration fluctuations in nonionic micellar solutions , 1987 .

[63]  R. Swendsen,et al.  Critical behavior of the three-dimensional Ising model , 1979 .

[64]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[65]  Robert H. Swendsen,et al.  Monte Carlo Renormalization Group Calculations of Critical Behavior in the Simple Cubic Ising Model , 1984 .

[66]  J. Thoen,et al.  Dielectric study of the two-phase region of binary liquid mixtures near the consolute point , 1988 .

[67]  Hensel,et al.  Observation of singular diameters in the coexistence curves of metals. , 1985, Physical review letters.

[68]  S. Bhatia Heat capacity of MnBr2·4H2O near the antiferromagnetic transition temperature , 1982 .

[69]  D. T. Jacobs,et al.  Turbidity of deuterated isobutyric acid and heavy water in the one‐phase region near the critical solution point , 1992 .

[70]  D. Chatenay,et al.  Light scattering study of a lower critical consolute point in a micellar system , 1984 .

[71]  M. Fisher,et al.  Unbiased Estimation of Corrections to Scaling by Partial Differential Approximants , 1982 .

[72]  R. Pearson Partition function of the Ising model on the periodic 4×4×4 lattice , 1982 .

[73]  Salvador,et al.  Finite-size scaling and the three-dimensional Ising model. , 1986, Physical review. B, Condensed matter.

[74]  Ted G. Lewis,et al.  Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.

[75]  Andrea J. Liu,et al.  The three-dimensional Ising model revisited numerically , 1989 .

[76]  J. R. Heringa,et al.  Monte Carlo renormalization of the three-dimensional Ising model: the influence of truncation , 1989 .

[77]  M. Uematsu,et al.  Measurements of the vapor-liquid coexistence curve and the critical parameters for 1,1,1,2-tetrafluoroethane , 1989 .

[78]  Giorgio Parisi,et al.  Effects of the random number generator on computer simulations , 1985 .

[79]  Jean Zinn-Justin,et al.  Critical exponents from field theory , 1980 .

[80]  M. Kumaran,et al.  Speed of sound close to the critical solution point of (tetrachloromethane+tetradecafluoromethylcyclohexane) , 1983 .

[81]  D. Beysens,et al.  Corrections to Scaling and Universality: Experimental Evidences , 1981 .

[82]  D. Cannell,et al.  Observation of 3D-Ising exponents in micellar solutions. , 1988, Physical review letters.

[83]  T. Kaneko,et al.  Critical behavior of nonionic micellar solutions , 1989 .

[84]  D. T. Jacobs,et al.  Testing the Lorentz–Lorenz relation in the near‐critical binary fluid mixture isobutyric acid and water , 1986 .

[85]  King,et al.  Equation-of-state analysis of the effects of an induced staggered field on the phase transition of CoF2. , 1989, Physical review. B, Condensed matter.

[86]  H. Weingärtner,et al.  The Effect of Short-Range Hydrogen-Bonded Interactions on the Nature of the Critical Point of Ionic Fluids. Part II: Static and Dynamic Light Scattering on Solutions of Ethylammonium Nitrate in n-Octanol , 1993 .

[87]  B. Almeida,et al.  Critical behaviour of the magnetoresistance of NdRu2Si2 near the Néel point , 1993 .

[88]  Coddington,et al.  Comparison of cluster algorithms for two-dimensional Potts models. , 1991, Physical review. B, Condensed matter.

[89]  J. L. Sengers,et al.  Critical behavior of a conducting ionic solution near its consolute point , 1990 .

[90]  Hastings,et al.  Critical properties of pure and randomly dilute dysprosium aluminum garnet. , 1985, Physical Review B (Condensed Matter).

[91]  Baker,et al.  Renormalized coupling constant for the three-dimensional ising model. , 1995, Physical review letters.

[92]  K. Maruyama,et al.  The critical exponent of binary liquid mixtures by Rayleigh and Brillouin scattering measurements: the hexane-methanol system , 1994 .

[93]  D. Landau Computer simulation studies of critical phenomena , 1994 .

[94]  Critical behaviour of thermal parameters of FeF2 at the Néel temperature , 1995 .

[95]  K. Kubota,et al.  Universal exponents for a nonionic micellar solution of tetraethylene glycol decylether in water , 1991 .

[96]  Neutron scattering and the critical behavior of the three-dimensional Ising antiferromagnet FeF2. , 1987, Physical review. B, Condensed matter.

[97]  K. Kubota,et al.  Critical behavior of a cationic surfactant in an aqueous salt solution , 1994 .

[98]  D. T. Jacobs,et al.  Coexistence curve of methanol-isooctane , 1986 .

[99]  J. Rehr,et al.  High-temperature series for scalar-field Lattice models: Generation and analysis , 1990 .