Multi-scale methods in time and space for particle simulations

Particle simulations arise in many applications such as gravitational N -body problems, electrostatics, and molecular dynamics simulations. The motion of the particles is governed by Newton’s equations of motion. Since the system of equations is typically non-linear, its solution requires numerical simulation via time integration. During each integration step the force on each particle needs to be computed. If long-range forces such as gravity or electrostatics are present the direct evaluation of the force for an N -particle system is an O(N) procedure which quickly becomes intractable for large systems. Two common approaches for improving the computational efficiency of the force evaluation, and hence particle simulations, are computing the force less frequently and computing the force more efficiently. In this dissertation we discuss how multi-scale methods in time and space can be applied towards this end. One way to compute the force less often is to assign a larger time step to the longrange forces. While the idea of multiple-time-stepping (MTS) has been explored in previous works, we will formulate a class of integrators called asynchronous variational integrators (AVI) in the context of particle simulations that allows for time steps to be chosen in arbitrary ratio. Although MTS schemes can be used to reduce the cost of particle simulations, there are potential drawbacks such as the presence of instabilities whose manifestation is dependent on the choice of time steps. A thorough linear stability analysis of AVI is performed to explore this issue. AVI is also extended to accommodate Langevin dynamics which is commonly used as a stochastic thermostat for molecular dynamics simulations of proteins. While using multiple time steps reduces the cost of force evaluations, this reduction

[1]  W. Daniel Analysis and implementation of a new constant acceleration subcycling algorithm , 1997 .

[2]  Liwei Lin,et al.  Silicon nanowire-based nanoactuator , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[3]  Michael Ortiz,et al.  On the Γ-Convergence of Discrete Dynamics and Variational Integrators , 2004, J. Nonlinear Sci..

[4]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[5]  M. Tuckerman,et al.  Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. , 2004, Physical review letters.

[6]  Y. Y. Lu,et al.  Convergence and stability analyses of multi-time step algorithm for parabolic systems , 1993 .

[7]  T. J. Delph,et al.  Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .

[8]  T. Schlick,et al.  Masking Resonance Artifacts in Force-Splitting Methods for Biomolecular Simulations by Extrapolative Langevin Dynamics , 1999 .

[9]  N. Fleck,et al.  The failure of composite tubes due to combined compression and torsion , 1994 .

[10]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[11]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[12]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..

[13]  Sivan Toledo,et al.  The Future Fast Fourier Transform? , 1997, PPSC.

[14]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[15]  T. Kizuka,et al.  Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width , 2005 .

[16]  William J.T. Daniel,et al.  The subcycled Newmark algorithm , 1997 .

[17]  Jerrold E. Marsden,et al.  Variational Methods, Multisymplectic Geometry and Continuum Mechanics , 2001 .

[18]  W. G. McMillan,et al.  The Virial Theorem , 2007 .

[19]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[20]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[21]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[22]  Thomas F. Miller,et al.  Symplectic quaternion scheme for biophysical molecular dynamics , 2002 .

[23]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[24]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[25]  R. Skeel,et al.  Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .

[26]  Zydrunas Gimbutas,et al.  A Generalized Fast Multipole Method for Nonoscillatory Kernels , 2003, SIAM J. Sci. Comput..

[27]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[28]  T. Schlick,et al.  Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme , 1995 .

[29]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[30]  Thierry Matthey,et al.  Overcoming Instabilities in Verlet-I/r-RESPA with the Mollified Impulse Method , 2002 .

[31]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[32]  Rodney S. Ruoff,et al.  Mechanics of Crystalline Boron Nanowires , 2005 .

[33]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[34]  Stephen D. Bond,et al.  The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .

[35]  William J.T. Daniel,et al.  A partial velocity approach to subcycling structural dynamics , 2003 .

[36]  Zydrunas Gimbutas,et al.  Coulomb Interactions on Planar Structures: Inverting the Square Root of the Laplacian , 2000, SIAM J. Sci. Comput..

[37]  Vasily V. Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[38]  Alain Combescure,et al.  Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .

[39]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[40]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[41]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[42]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[43]  D. H. Tsai The virial theorem and stress calculation in molecular dynamics , 1979 .

[44]  Robert D. Skeel,et al.  Nonlinear Stability Analysis of Area-Preserving Integrators , 2000, SIAM J. Numer. Anal..

[45]  Deyu Li,et al.  DNA translocation in inorganic nanotubes. , 2005, Nano letters.

[46]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[47]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[48]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[49]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[50]  Keon Wook Kang,et al.  Brittle and ductile fracture of semiconductor nanowires – molecular dynamics simulations , 2007 .

[51]  Qian Wang,et al.  Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .

[52]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[53]  Yuefan Deng,et al.  Error and timing analysis of multiple time-step integration methods for molecular dynamics , 2007, Comput. Phys. Commun..

[54]  Yu Huang,et al.  Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires , 2005 .

[55]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[56]  Sidney Yip,et al.  Atomic‐level stress in an inhomogeneous system , 1991 .

[57]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[58]  Richard D. James,et al.  Objective Molecular Dynamics , 2007 .

[59]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[60]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[61]  A. Sommerfeld Partial Differential Equations in Physics , 1949 .

[62]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[63]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[64]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[65]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Ronald R. Coifman,et al.  Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..

[67]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[68]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[69]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[70]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[71]  Y. Isono,et al.  Development of Electrostatic Actuated Nano Tensile Testing Device for Mechanical and Electrical Characteristics of FIB Deposited Carbon Nanowire , 2006 .

[72]  A. Lew Variational time integrators in computational solid mechanics , 2003 .

[73]  Per-Gunnar Martinsson,et al.  An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..

[74]  W. Daniel A study of the stability of subcycling algorithms in structural dynamics , 1998 .

[75]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[76]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[77]  Sidney Yip,et al.  Periodic image effects in dislocation modelling , 2003 .

[78]  T. Schlick,et al.  Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .

[79]  Tamar Schlick,et al.  A Family of Symplectic Integrators: Stability, Accuracy, and Molecular Dynamics Applications , 1997, SIAM J. Sci. Comput..

[80]  Y. Feng,et al.  ASYNCHRONOUS / MULTIPLE TIME INTEGRATORS FOR MULTI-FRACTURING SOLIDS AND DISCRETE SYSTEMS , 2005 .

[81]  Mark O. Neal,et al.  Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems , 1989 .

[82]  Leslie Greengard,et al.  A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..

[83]  Alain Combescure,et al.  Multi‐time‐step and two‐scale domain decomposition method for non‐linear structural dynamics , 2003 .

[84]  I. Miranda,et al.  Implicit-Explicit Finite Elements in Nonlinear Transient Analysis , 1979 .

[85]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[86]  Robert D. Skeel,et al.  Dangers of multiple time step methods , 1993 .

[87]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[88]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[89]  J. Marsden,et al.  Variational time integrators , 2004 .

[90]  T. Schlick,et al.  Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics , 1998 .