Multi-scale methods in time and space for particle simulations
暂无分享,去创建一个
[1] W. Daniel. Analysis and implementation of a new constant acceleration subcycling algorithm , 1997 .
[2] Liwei Lin,et al. Silicon nanowire-based nanoactuator , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..
[3] Michael Ortiz,et al. On the Γ-Convergence of Discrete Dynamics and Variational Integrators , 2004, J. Nonlinear Sci..
[4] Anthony G. Evans,et al. A microbend test method for measuring the plasticity length scale , 1998 .
[5] M. Tuckerman,et al. Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. , 2004, Physical review letters.
[6] Y. Y. Lu,et al. Convergence and stability analyses of multi-time step algorithm for parabolic systems , 1993 .
[7] T. J. Delph,et al. Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .
[8] T. Schlick,et al. Masking Resonance Artifacts in Force-Splitting Methods for Biomolecular Simulations by Extrapolative Langevin Dynamics , 1999 .
[9] N. Fleck,et al. The failure of composite tubes due to combined compression and torsion , 1994 .
[10] T. Darden,et al. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .
[11] D. Zorin,et al. A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .
[12] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..
[13] Sivan Toledo,et al. The Future Fast Fourier Transform? , 1997, PPSC.
[14] L. Greengard,et al. Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .
[15] T. Kizuka,et al. Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width , 2005 .
[16] William J.T. Daniel,et al. The subcycled Newmark algorithm , 1997 .
[17] Jerrold E. Marsden,et al. Variational Methods, Multisymplectic Geometry and Continuum Mechanics , 2001 .
[18] W. G. McMillan,et al. The Virial Theorem , 2007 .
[19] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[20] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[21] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[22] Thomas F. Miller,et al. Symplectic quaternion scheme for biophysical molecular dynamics , 2002 .
[23] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[24] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[25] R. Skeel,et al. Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .
[26] Zydrunas Gimbutas,et al. A Generalized Fast Multipole Method for Nonoscillatory Kernels , 2003, SIAM J. Sci. Comput..
[27] L. Greengard,et al. A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.
[28] T. Schlick,et al. Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme , 1995 .
[29] S. Swain. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .
[30] Thierry Matthey,et al. Overcoming Instabilities in Verlet-I/r-RESPA with the Mollified Impulse Method , 2002 .
[31] Ernst Hairer,et al. Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..
[32] Rodney S. Ruoff,et al. Mechanics of Crystalline Boron Nanowires , 2005 .
[33] J. Marsden,et al. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .
[34] Stephen D. Bond,et al. The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .
[35] William J.T. Daniel,et al. A partial velocity approach to subcycling structural dynamics , 2003 .
[36] Zydrunas Gimbutas,et al. Coulomb Interactions on Planar Structures: Inverting the Square Root of the Laplacian , 2000, SIAM J. Sci. Comput..
[37] Vasily V. Bulatov,et al. Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .
[38] Alain Combescure,et al. Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .
[39] M. Baskes,et al. Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.
[40] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[41] M. Parrinello,et al. Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .
[42] B. Leimkuhler,et al. Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .
[43] D. H. Tsai. The virial theorem and stress calculation in molecular dynamics , 1979 .
[44] Robert D. Skeel,et al. Nonlinear Stability Analysis of Area-Preserving Integrators , 2000, SIAM J. Numer. Anal..
[45] Deyu Li,et al. DNA translocation in inorganic nanotubes. , 2005, Nano letters.
[46] Marlis Hochbruck,et al. A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.
[47] J. Dicapua. Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.
[48] Ernst Hairer,et al. The life-span of backward error analysis for numerical integrators , 1997 .
[49] S. Reich. Backward Error Analysis for Numerical Integrators , 1999 .
[50] Keon Wook Kang,et al. Brittle and ductile fracture of semiconductor nanowires – molecular dynamics simulations , 2007 .
[51] Qian Wang,et al. Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .
[52] R. Beatson,et al. A short course on fast multipole methods , 1997 .
[53] Yuefan Deng,et al. Error and timing analysis of multiple time-step integration methods for molecular dynamics , 2007, Comput. Phys. Commun..
[54] Yu Huang,et al. Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires , 2005 .
[55] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[56] Sidney Yip,et al. Atomic‐level stress in an inhomogeneous system , 1991 .
[57] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[58] Richard D. James,et al. Objective Molecular Dynamics , 2007 .
[59] J. Marsden,et al. Mechanical integrators derived from a discrete variational principle , 1997 .
[60] Weber,et al. Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.
[61] A. Sommerfeld. Partial Differential Equations in Physics , 1949 .
[62] Jonathan A. Zimmerman,et al. Calculation of stress in atomistic simulation , 2004 .
[63] Murray S. Daw,et al. The embedded-atom method: a review of theory and applications , 1993 .
[64] G. Benettin,et al. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .
[65] Horacio D Espinosa,et al. An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[66] Ronald R. Coifman,et al. Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..
[67] J. Marsden,et al. Asynchronous Variational Integrators , 2003 .
[68] C. Lieber,et al. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.
[69] J. D. Eshelby. The Continuum Theory of Lattice Defects , 1956 .
[70] Charles M. Lieber,et al. High Performance Silicon Nanowire Field Effect Transistors , 2003 .
[71] Y. Isono,et al. Development of Electrostatic Actuated Nano Tensile Testing Device for Mechanical and Electrical Characteristics of FIB Deposited Carbon Nanowire , 2006 .
[72] A. Lew. Variational time integrators in computational solid mechanics , 2003 .
[73] Per-Gunnar Martinsson,et al. An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..
[74] W. Daniel. A study of the stability of subcycling algorithms in structural dynamics , 1998 .
[75] Thomas J. R. Hughes,et al. Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .
[76] J. Izaguirre. Longer Time Steps for Molecular Dynamics , 1999 .
[77] Sidney Yip,et al. Periodic image effects in dislocation modelling , 2003 .
[78] T. Schlick,et al. Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .
[79] Tamar Schlick,et al. A Family of Symplectic Integrators: Stability, Accuracy, and Molecular Dynamics Applications , 1997, SIAM J. Sci. Comput..
[80] Y. Feng,et al. ASYNCHRONOUS / MULTIPLE TIME INTEGRATORS FOR MULTI-FRACTURING SOLIDS AND DISCRETE SYSTEMS , 2005 .
[81] Mark O. Neal,et al. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems , 1989 .
[82] Leslie Greengard,et al. A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..
[83] Alain Combescure,et al. Multi‐time‐step and two‐scale domain decomposition method for non‐linear structural dynamics , 2003 .
[84] I. Miranda,et al. Implicit-Explicit Finite Elements in Nonlinear Transient Analysis , 1979 .
[85] Mark E. Tuckerman,et al. Reversible multiple time scale molecular dynamics , 1992 .
[86] Robert D. Skeel,et al. Dangers of multiple time step methods , 1993 .
[87] Klaus Schulten,et al. Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .
[88] T. Darden,et al. A smooth particle mesh Ewald method , 1995 .
[89] J. Marsden,et al. Variational time integrators , 2004 .
[90] T. Schlick,et al. Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics , 1998 .