A linear, decoupled fractional time‐stepping method for the nonlinear fluid–fluid interaction

In this paper, a linear decoupled fractional time stepping method is proposed and developed for the nonlinear fluid–fluid interaction governed by the two Navier–Stokes equations. Partitioned time stepping method is applied to two‐physics problems with stiffness of the coupling terms being treated explicitly and is also unconditionally stable. As for each fluid, the velocity and pressure are respectively determined by just solving one vector‐valued quasi‐elliptic equation and the Possion equation with homogeneous Neumann boundary condition per time step. Therefore, the cost of the fluid–fluid interaction is dominant to solve four simple linear equations, which greatly reduces the computational cost of the whole system. The method exploits properties of the fluid–fluid system to establish its stability and convergence with the same results as the standard scheme. Finally, numerical experiments are presented to show the performance of the proposed method.

[1]  Zhangxin Chen,et al.  A linear, stabilized, non-spatial iterative, partitioned time stepping method for the nonlinear Navier–Stokes/Navier–Stokes interaction model , 2019, Boundary Value Problems.

[2]  Tytti Saksa Navier-Stokes Equations , 2019, Fundamentals of Ship Hydrodynamics.

[3]  M. Gunzburger,et al.  A higher-order ensemble/proper orthogonal decomposition method for the nonstationary Navier-Stokes equations , 2017, 1709.06422.

[4]  Li Shan,et al.  Stability and Convergence Analysis of a Decoupled Algorithm for a Fluid-Fluid Interaction Problem , 2016, SIAM J. Numer. Anal..

[5]  Zhangxin Chen,et al.  A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem , 2016, J. Comput. Appl. Math..

[6]  Jie Shen,et al.  A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids , 2016, J. Comput. Phys..

[7]  Xiaoming He,et al.  A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition , 2015, SIAM J. Sci. Comput..

[8]  Jie Shen,et al.  Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows , 2015, SIAM J. Numer. Anal..

[9]  Ying He and Jie Shen,et al.  Unconditionally Stable Pressure-Correction Schemes for a Linear Fluid-Structure Interaction Problem , 2014 .

[10]  Jie Shen,et al.  Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density , 2014, Journal of Scientific Computing.

[11]  Jie Shen,et al.  Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids , 2014, SIAM J. Sci. Comput..

[12]  Hoang Tran,et al.  Analysis of Long Time Stability and Errors of Two Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows , 2013, SIAM J. Numer. Anal..

[13]  Zhangxin Chen,et al.  A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations , 2012, Numerische Mathematik.

[14]  Jeffrey M. Connors,et al.  A fluid‐fluid interaction method using decoupled subproblems and differing time steps , 2012 .

[15]  William J. Layton,et al.  Decoupled Time Stepping Methods for Fluid-Fluid Interaction , 2012, SIAM J. Numer. Anal..

[16]  J.-L. GUERMOND,et al.  Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density , 2011, SIAM J. Numer. Anal..

[17]  J. Guermond,et al.  A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting , 2010 .

[18]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[19]  J. Guermond,et al.  A splitting method for incompressible flows with variable density based on a pressure Poisson equation , 2009, J. Comput. Phys..

[20]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[21]  Abner J. Salgado,et al.  A fractional step method based on a pressure Poisson equation for incompressible flows with variable density , 2008 .

[22]  Yinnian He,et al.  A new stabilized finite element method for the transient Navier-Stokes equations , 2007 .

[23]  Jian Li,et al.  A pressure-Poisson stabilized finite element method for the non-stationary Stokes equations to circumvent the inf-sup condition , 2006, Appl. Math. Comput..

[24]  Christine Bernardi,et al.  A Model for Two Coupled Turbulent Fluids Part II: Numerical Analysis of a Spectral Discretization , 2002, SIAM J. Numer. Anal..

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[27]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[28]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[29]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[30]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[31]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[32]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[33]  L. Rebholz PENALTY-PROJECTION SCHEMES FOR THE CAHN-HILLIARD NAVIER-STOKES DIFFUSE INTERFACE MODEL OF TWO PHASE FLOW , AND THEIR CONNECTION TO DIVERGENCE-FREE COUPLED SCHEMES , 2018 .

[34]  H. Rui,et al.  A PARTITIONED METHOD WITH DIFFERENT TIME STEPS FOR COUPLED STOKES AND DARCY FLOWS WITH TRANSPORT , 2018 .

[35]  J. Connors AN ENSEMBLE-BASED CONVENTIONAL TURBULENCE MODEL FOR FLUID-FLUID INTERACTION , 2017 .

[36]  Peter Kuster Finite Element Methods And Their Applications , 2016 .

[37]  Zhangxin Chen,et al.  Optimal $$L^2, H^1$$L2,H1 and $$L^\infty $$L∞ analysis of finite volume methods for the stationary Navier–Stokes equations with large data , 2014, Numerische Mathematik.

[38]  Numerische,et al.  Optimal L 2 , H 1 and L ∞ analysis of finite volume methods for the stationary Navier–Stokes equations with large data , 2013 .

[39]  G. Burton Sobolev Spaces , 2013 .

[40]  Junping Wang,et al.  SUPERCONVERGENCE BY L 2-PROJECTIONS FOR STABILIZED FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS , 2009 .

[41]  Jie Shen,et al.  Gauge-Uzawa methods for incompressible flows with variable density , 2007, J. Comput. Phys..

[42]  Jonas Koko,et al.  Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids , 2006 .

[43]  R. Temam,et al.  Models of the coupled atmosphere and ocean (CAO I). I , 1993 .

[44]  R. Temam,et al.  Numerical analysis of the coupled atmosphere-ocean models (CAO II). II , 1993 .

[45]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[46]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .