Neutrons and synchrotron radiation in engineering materials science : from fundamentals to material and component characterization

PART I: GENERAL MICROSTRUCTURE AND PROPERTIES OF ENGINEERING MATERIALS INTERNAL STRESSES IN ENGINEERING MATERIALS TEXTURE AND TEXTURE ANALYSIS IN ENGINEERING MATERIALS PHYSICAL PROPERTIES OF PHOTONS AND NEUTRONS RADIATION SOURCES GENERATION AND PROPERTIES OF NEUTRONS PRODUCTION AND PROPERTIES OF SYNCHROTRON RADIATION PART II: METHODS INTRODUCTION TO DIFFRACTION METHODS FOR INTERNAL STRESS ANALYSES STRESS ANALYSIS BY ANGLE-DISPENSIVE NEUTRON DIFFRACTION STRESS ANALYSIS BY ENERGY-DISPERSIVE NEUTRON DIFFRACTION RESIDUAL STRESS ANALYSIS BY MONOCHROMATIC HIGH-ENERGY X-RAYS RESIDUAL STRESS ANALYSIS BY WHITE HIGH ENERGY X-RAYS REFLECTION MODE TRANSMISSION MODE DIFFRACTION IMAGING FOR MICROSTRUCTURE ANALYSIS BASICS OF SMALL-ANGLE SCATTERING METHODS SMALL-ANGLE NEUTRON SCATTERING DECOMPOSITION KINETICS IN COPPER-COBALT ALLOY SYSTEMS: APPLICATIONS OF SMALL-ANGLE X-RAY SCATTERING New Developments in Neutron Tomography NEUTRON AND SYNCHROTRON -RADIATION-BASED IMAGING FOR APPLICATIONS IN MATERIALS SCIENCE - FROM MACRO- TO NANOTOMOGRAPHY mu-TOMOGRAPHY OF ENGINEERING MATERIALS DIFFRACTION ENHANCED IMAGING PART III: NEW AND EMERGING METHODS 3D X-RAY DIFFRACTION MICROSCOPE 3D MICRON-RESOLUTION LAUE DIFFRACTION QUANTITATIVE ANALYSIS OF THREE-DIMENSIONAL PLASTICS STRAIN FIELD USING MARKERS AND X-RAY ABSORPTION TOMOGRAPHY COMBINED DIFFRACTION AND TOMOGRAPHY PART IV: INDUSTRIAL APPLICATIONS DIFFRACTION-BASED RESIDUAL STRESS ANALYSIS APPLIED TO PROBLEMS IN THE AIRCRAFT INDUSTRY OPTIMIZATION OF RESIDUAL STRESSES IN CRANKHAFTS