Hybrid Differential Evolution for Estimation of Kinetic Parameters for Biochemical Systems

Abstract Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the convergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model parameters for a complex mathematical model.

[1]  Mitsuo Gen,et al.  Various hybrid methods based on genetic algorithm with fuzzy logic controller , 2003, J. Intell. Manuf..

[2]  B. Babu,et al.  Optimization of process synthesis and design problems: A modified differential evolution approach , 2006 .

[3]  P. Englezos,et al.  Comparison of the Luus−Jaakola Optimization and Gauss−Newton Methods for Parameter Estimation in Ordinary Differential Equation Models , 2006 .

[4]  B. V. Babu,et al.  Modified differential evolution (MDE) for optimization of non-linear chemical processes , 2006, Comput. Chem. Eng..

[5]  Günter Wozny,et al.  Sequential Parameter Estimation for Large-Scale Systems with Multiple Data Sets. 1. Computational Framework , 2003 .

[6]  G. Froment,et al.  A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models , 1998 .

[7]  Thomas F. Edgar,et al.  Robust error‐in‐variables estimation using nonlinear programming techniques , 1990 .

[8]  Diego Martinez Prata,et al.  Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor , 2010 .

[9]  Diego Martinez Prata,et al.  Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor , 2009 .

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  Venkat Venkatasubramanian,et al.  A hybrid genetic algorithm for efficient parameter estimation of large kinetic models , 2004, Comput. Chem. Eng..

[12]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[13]  Feng-Sheng Wang,et al.  Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process , 2001 .

[14]  M. Ranganath,et al.  Identification of bioprocesses using Genetic Algorithm , 1999 .

[15]  Nail A. Gumerov,et al.  Application of a hybrid gentic/powell algorithm and a boundary element method to electical , 2001 .

[16]  Q. Pham Dynamic optimization of chemical engineering processes by an evolutionary method , 1998 .

[17]  Christodoulos A. Floudas,et al.  Rebuttal to Comments on “Global Optimization for the Parameter Estimation of Differential−Algebraic Systems” , 2001 .

[18]  L. Biegler,et al.  A quasi‐sequential approach to large‐scale dynamic optimization problems , 2006 .