Real-time imaging of methane gas leaks using a single-pixel camera.

We mechanically exfoliate mono- and few-layers of the transition metal dichalcogenides molybdenum disulfide, molybdenum diselenide, and tungsten diselenide. The exact number of layers is unambiguously determined by atomic force microscopy and high-resolution Raman spectroscopy. Strong photoluminescence emission is caused by the transition from an indirect band gap semiconductor of bulk material to a direct band gap semiconductor in atomically thin form.

[1]  H. Zeng,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[2]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[3]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[4]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[5]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[6]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[7]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[8]  D. Weiss,et al.  Low‐temperature photoluminescence of oxide‐covered single‐layer MoS2 , 2011, 1112.3747.

[9]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[10]  C N R Rao,et al.  Graphene analogues of layered metal selenides. , 2011, Dalton transactions.

[11]  Baibiao Huang,et al.  Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. , 2011, Physical chemistry chemical physics : PCCP.

[12]  E. Aktürk,et al.  A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2 , 2011 .

[13]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[14]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[15]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[16]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[17]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[18]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[19]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[20]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[21]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[22]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[23]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[24]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[26]  E. D. Crozier,et al.  Structures of exfoliated single layers of WS 2 , MoS 2 , and MoSe 2 in aqueous suspension , 2002 .

[27]  M. Agarwal,et al.  Optical band gap in tungsten diselenide single crystals intercalated by indium , 2000 .

[28]  G. Frey,et al.  Raman and resonance Raman investigation of MoS 2 nanoparticles , 1999 .

[29]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[30]  S. Wagner,et al.  pn junctions in tungsten diselenide , 1983 .

[31]  S. Sugai,et al.  High-pressure Raman spectroscopy in the layered materials 2H-MoS 2 , 2H-MoSe 2 , and 2H-MoTe 2 , 1982 .

[32]  M. Izumi,et al.  Raman Scattering and Infrared Reflectance in 2H-MoSe2 , 1980 .

[33]  F. Lévy,et al.  Interlayer bonding and localized charge in MoSe2 and α-MoTe2 , 1980 .

[34]  A. Anedda,et al.  Exciton spectra in MoSe2 , 1980 .

[35]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[36]  J. C. Irwin,et al.  Long wavelength optic phonons in WSe2 , 1977 .

[37]  W. Y. Liang,et al.  Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2 , 1976 .

[38]  T. Wieting,et al.  Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo S 2 , 1971 .

[39]  T. Wieting,et al.  Lattice Mode Degeneracy in Mo S 2 and Other Layer Compounds , 1970 .

[40]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .