Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers

We have compared light- and heavy-ion irradiation of InGaAs/InAlAs multiple-quantum wells for ultrafast saturable absorption applications. Under heavy-ion impacts, defect clusters were produced, as observed via transmission electronic microscopy. By contrast, in proton-irradiated samples, only point defects were formed. Nonlinear absorption measurements were performed with excitonic resonance pumping. The relaxation time of absorption saturation (minimum value 2 ps) did not depend on the irradiating ion, and was practically independent of the pulse repetition rate (up to 10 GHz) and optical excitation fluence (0.1 mJ/cm2). We conclude that irradiating multiple-quantum wells with light ions is as effective as using heavy ions, when fabricating ultrafast saturable absorber devices operating at high bit rate and near bandedge wavelength.