Concentration phenomena in the geometry of Bell correlations

Bell's theorem shows that local measurements on entangled states give rise to correlations incompatible with local hidden variable models. The degree of quantum nonlocality is not maximal though, as there are even more nonlocal theories beyond quantum theory still compatible with the nonsignalling principle. In spite of decades of research, we still have a very fragmented picture of the whole geometry of these different sets of correlations. Here we employ both analytical and numerical tools to ameliorate that. First, we identify two different classes of Bell scenarios where the nonsignalling correlations can behave very differently: in one case, the correlations are generically quantum and nonlocal while on the other quite the opposite happens as the correlations are generically classical and local. Second, by randomly sampling over nonsignalling correlations, we compute the distribution of a nonlocality quantifier based on the trace distance to the local set. With that, we conclude that the nonlocal correlations can show concentration phenomena: their distribution is peaked at a distance from the local set that increases both with the number of parts or measurements being performed.

[1]  C. Ross Found , 1869, The Dental register.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[4]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[5]  S. Braunstein,et al.  Wringing out better bell inequalities , 1990 .

[6]  Itamar Pitowsky,et al.  Correlation polytopes: Their geometry and complexity , 1991, Math. Program..

[7]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[8]  B. M. Fulk MATH , 1992 .

[9]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[10]  Popescu,et al.  Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality. , 1995, Physical review letters.

[11]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[12]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[13]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.

[14]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[15]  D. Bacon,et al.  Communication cost of simulating Bell correlations. , 2003, Physical review letters.

[16]  S. Pironio,et al.  Violations of Bell inequalities as lower bounds on the communication cost of nonlocal correlations , 2003, quant-ph/0304176.

[17]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[18]  M. Żukowski,et al.  Bell's inequalities and quantum communication complexity. , 2004, Physical review letters.

[19]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[20]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[21]  A. Cabello How much larger quantum correlations are than classical ones (5 pages) , 2004, quant-ph/0409192.

[22]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[23]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[24]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[25]  M. Wolf,et al.  Unbounded Violation of Tripartite Bell Inequalities , 2007, quant-ph/0702189.

[26]  M. A. Can,et al.  Simple test for hidden variables in spin-1 systems. , 2007, Physical review letters.

[27]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[28]  V. Scarani,et al.  Testing the dimension of Hilbert spaces. , 2008, Physical review letters.

[29]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[30]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  N. Gisin,et al.  Guess your neighbor's input: a multipartite nonlocal game with no quantum advantage. , 2010, Physical review letters.

[32]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[33]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[34]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[35]  S. Yelin,et al.  Quantum bounds for inequalities involving marginal expectation values , 2011, 1106.2169.

[36]  R. Chaves,et al.  Multipartite quantum nonlocality under local decoherence , 2012, 1204.2562.

[37]  T. Fritz,et al.  Entropic approach to local realism and noncontextuality , 2012, 1201.3340.

[38]  Wim van Dam Implausible consequences of superstrong nonlocality , 2012, Natural Computing.

[39]  Marco T'ulio Quintino,et al.  All noncontextuality inequalities for the n-cycle scenario , 2012, 1206.3212.

[40]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[41]  Lars Erik Würflinger,et al.  Nonlocality in sequential correlation scenarios , 2013, 1308.0477.

[42]  E. Chitambar,et al.  Bell inequalities with communication assistance , 2014, 1405.3211.

[43]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[44]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[45]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[46]  A. Acín,et al.  Almost quantum correlations , 2014, Nature Communications.

[47]  R Chaves,et al.  Unifying framework for relaxations of the causal assumptions in Bell's theorem. , 2014, Physical review letters.

[48]  Carlos Palazuelos,et al.  Random Constructions in Bell Inequalities: A Survey , 2015, 1502.02175.

[49]  Christian Majenz,et al.  Information–theoretic implications of quantum causal structures , 2014, Nature Communications.

[50]  Nicolas Gisin,et al.  Nonlinear Bell Inequalities Tailored for Quantum Networks. , 2015, Physical review letters.

[51]  V. Scarani,et al.  A new device-independent dimension witness and its experimental implementation , 2016, 1606.01602.

[52]  Cécilia Lancien,et al.  Random Quantum Correlations are Generically Non-classical , 2016, 1607.04203.

[53]  Rafael Chaves,et al.  Bell scenarios with communication , 2016, 1607.08182.

[54]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[55]  C. González-Guillén,et al.  Sampling Quantum Nonlocal Correlations with High Probability , 2014, 1412.4010.

[56]  Rafael Chaves,et al.  Polynomial Bell Inequalities. , 2015, Physical review letters.

[57]  R. Chaves,et al.  Probing the Non-Classicality of Temporal Correlations , 2017, 1704.05469.

[58]  A. Cabello,et al.  Self-testing properties of Gisin's elegant Bell inequality , 2017, 1706.02130.

[59]  H. Weinfurter,et al.  Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. , 2016, Physical review letters.

[60]  Valerio Scarani,et al.  All pure bipartite entangled states can be self-tested , 2016, Nature Communications.

[61]  T. Vértesi,et al.  Family of Bell inequalities violated by higher-dimensional bound entangled states , 2017, 1704.08600.

[62]  Koon Tong Goh,et al.  Geometry of the set of quantum correlations , 2017, 1710.05892.

[63]  Fabio Sciarrino,et al.  Quantum violation of an instrumental test , 2018, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[64]  R. Chaves,et al.  Quantifying Bell nonlocality with the trace distance. , 2017, 1709.04260.

[65]  R. Oliveira,et al.  Small violations of Bell inequalities for multipartite pure random states , 2018, 1801.07523.

[66]  A. Falcon Physics I.1 , 2018 .

[67]  T. V'ertesi,et al.  Survey on the Bell nonlocality of a pair of entangled qudits , 2018, Physical Review A.

[68]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[69]  Tsuyoshi Murata,et al.  {m , 1934, ACML.