Role of P-Glycoprotein and Breast Cancer Resistance Protein-1 in the Brain Penetration and Brain Pharmacodynamic Activity of the Novel Phosphatidylinositol 3-Kinase Inhibitor GDC-0941

2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(−/−), Bcrp1(−/−), and Mdr1a/b(−/−)/Bcrp1(−/−) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(−/−) mice and was modestly higher in the Mdr1a/b(−/−) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(−/−)/Bcrp1(−/−) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min · kg) in the wild-type mice and from 18 to 35 ml/(min · kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(−/−)/Bcrp1(−/−) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.

[1]  H. Kusuhara,et al.  Kinetic Analysis of the Cooperation of P-Glycoprotein (P-gp/Abcb1) and Breast Cancer Resistance Protein (Bcrp/Abcg2) in Limiting the Brain and Testis Penetration of Erlotinib, Flavopiridol, and Mitoxantrone , 2010, Journal of Pharmacology and Experimental Therapeutics.

[2]  W. Yung,et al.  Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. , 2010, Neuro-oncology.

[3]  Eric C. Holland,et al.  Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma , 2010, Nature Reviews Cancer.

[4]  E. Plise,et al.  Expression and activity of the efflux transporters ABCB1, ABCC2 and ABCG2 in the human colorectal carcinoma cell line LS513. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[5]  J. Ware,et al.  A phase I study evaluating the pharmacokinetics (PK) and pharmacodynamics (PD) of the oral pan-phosphoinositide-3 kinase (PI3K) inhibitor GDC-0941. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  F. Nelson,et al.  The Effect of Breast Cancer Resistance Protein and P-Glycoprotein on the Brain Penetration of Flavopiridol, Imatinib Mesylate (Gleevec), Prazosin, and 2-Methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic Acid (PF-407288) in Mice , 2009, Drug Metabolism and Disposition.

[7]  Joseph W. Polli,et al.  An Unexpected Synergist Role of P-Glycoprotein and Breast Cancer Resistance Protein on the Central Nervous System Penetration of the Tyrosine Kinase Inhibitor Lapatinib (N-{3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016) , 2009, Drug Metabolism and Disposition.

[8]  Gary Box,et al.  The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer . , 2008, Journal of medicinal chemistry.

[9]  Jos H Beijnen,et al.  P-Glycoprotein and Breast Cancer Resistance Protein: Two Dominant Transporters Working Together in Limiting the Brain Penetration of Topotecan , 2007, Clinical Cancer Research.

[10]  T. Maurer,et al.  Use of Plasma and Brain Unbound Fractions to Assess the Extent of Brain Distribution of 34 Drugs: Comparison of Unbound Concentration Ratios to in Vivo P-Glycoprotein Efflux Ratios , 2007, Drug Metabolism and Disposition.

[11]  J. Beijnen,et al.  Blood–brain barrier and chemotherapeutic treatment of brain tumors , 2006, Expert review of neurotherapeutics.

[12]  Christian Hartmann,et al.  PIK3CA mutations in glioblastoma multiforme , 2005, Acta Neuropathologica.

[13]  L. Cantley,et al.  Targeting the PI3K-Akt pathway in human cancer: rationale and promise. , 2003, Cancer cell.

[14]  Ming Yao,et al.  Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats , 2003, Archives of pharmacal research.

[15]  S. Liebner,et al.  Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme , 2000, Acta Neuropathologica.