Using the Kalman filter for parameter estimation in biogeochemical models

We investigate application of nonlinear variants of the Kalman filter (KF) to sequential parameter estimation in biogeochemical models, with particular focus on two components of the statistical model: Q, the covariance of the stochastic forcing which we use to represent model error, and R, the observation error covariance matrix. We explored sensitivity of parameter estimates from the extended and ensemble Kalman filters (EKF and EnKF) to the choice of Q, R, initial parameters and ensemble size using pseudo-data from a simple yet highly nonlinear test model with many characteristics similar to real terrestrial biogeochemistry models. We found for our application that the use of inflated observation uncertainties led to the best and most stable parameter estimates. Although this reduced the rate of convergence to a solution, it also reduced the sensitivity of the solution to model error or ensemble size in the EnKF. Neither the use of model error for the parameters nor inflation of the state error covariance was particularly successful. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  R. Aalderink,et al.  Identification of the parameters describing primary production from continuous oxygen signals. , 1997 .

[2]  Shaun Quegan,et al.  Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications , 2005 .

[3]  Keith J. Burnham,et al.  Dual extended Kalman filter for vehicle state and parameter estimation , 2006 .

[4]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[5]  M. Raupach Dynamics of resource production and utilisation in two-component biosphere-human and terrestrial carbon systems , 2006 .

[6]  Anthony J. Jakeman,et al.  Random walks in the kalman filter: Implications for greenhouse gas flux deductions , 1995 .

[7]  James D. Annan,et al.  Parameter estimation using chaotic time series , 2005 .

[8]  Matthias Winkler,et al.  RESEARCH NOTES FROM COLLABORATIONS: Estimation of detector alignment parameters using the Kalman filter with annealing , 2003 .

[9]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[10]  D. Hollinger,et al.  Statistical modeling of ecosystem respiration using eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models , 2005 .

[11]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[12]  Alberto Corigliano,et al.  Identification of Gurson–Tvergaard material model parameters via Kalman filtering technique. I. Theory , 2000 .

[13]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[14]  Geir Evensen,et al.  Advanced Data Assimilation for Strongly Nonlinear Dynamics , 1997 .

[15]  P. Pastore,et al.  Comparison of the simplex, marquardt, and extended and iterated extended kalman filter procedures in the estimation of parameters from voltammetric curves , 1989 .

[16]  M. Verlaan,et al.  Nonlinearity in Data Assimilation Applications: A Practical Method for Analysis , 2001 .

[17]  Jim Kao,et al.  Estimating model parameters for an impact-produced shock-wave simulation: Optimal use of partial data with the extended Kalman filter , 2006, J. Comput. Phys..

[18]  Richard Ménard,et al.  Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part II: χ2-Validated Results and Analysis of Variance and Correlation Dynamics , 2000 .

[19]  G. Kivman,et al.  Sequential parameter estimation for stochastic systems , 2003 .

[20]  Yann Kerr,et al.  Deriving catchment-scale water and energy balance parameters using data assimilation based on extended Kalman filtering , 2002 .

[21]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[22]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[23]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[24]  B. Law,et al.  An improved analysis of forest carbon dynamics using data assimilation , 2005 .

[25]  Ashley F. Emery,et al.  Estimating Parameters and Refining Thermal Models by Using the Extended Kalman Filter Approach , 2004 .

[26]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[27]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[28]  Rolf Johan Lorentzen,et al.  Tuning of parameters in a two-phase flow model using an ensemble Kalman filter , 2003 .

[29]  A. Corigliano,et al.  Parameter identification in explicit structural dynamics: performance of the extended Kalman filter , 2004 .

[30]  M. B. Beck,et al.  A new approach to the identification of model structure , 1994 .

[31]  S. Ciavatta,et al.  The Extended Kalman Filter (EKF) as a tool for the assimilation of high frequency water quality data , 2003 .

[32]  Li Deng,et al.  Joint state and parameter estimation for a target-directed nonlinear dynamic system model , 2003, IEEE Trans. Signal Process..

[33]  J Kurths,et al.  Estimation of parameters and unobserved components for nonlinear systems from noisy time series. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  E. Stear,et al.  The simultaneous on-line estimation of parameters and states in linear systems , 1976 .

[35]  S. Roxburgh,et al.  OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models , 2007 .

[36]  Eric A. Wan,et al.  Nonlinear estimation and modeling of noisy time series by dual kalman filtering methods , 2000 .

[37]  J. Annan,et al.  Efficient parameter estimation for a highly chaotic system , 2004 .

[38]  Roger M. Goodall,et al.  Estimation of railway vehicle suspension parameters for condition monitoring , 2007 .

[39]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[40]  S Krämer,et al.  Runoff modelling using radar data and flow measurements in a stochastic state space approach. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[41]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[42]  Paulo Afonso,et al.  Unscented Kalman Filtering of a Simulated pH System , 2004 .

[43]  James W. Jones,et al.  ESTIMATING SOIL CARBON LEVELS USING AN ENSEMBLE KALMAN FILTER , 2004 .

[44]  Ian G. Enting,et al.  Kalman filter analysis of ice core data 1. Method development and testing the statistics , 2002 .

[45]  Hélène Roux,et al.  Parameter identification using optimization techniques in open-channel inverse problems , 2005 .

[46]  Jürgen Kurths,et al.  The Unscented Kalman Filter, a Powerful Tool for Data Analysis , 2004, Int. J. Bifurc. Chaos.

[47]  Saeid Habibi,et al.  Failure monitoring in a high performance hydrostatic actuation system using the extended Kalman filter , 2006 .

[48]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[49]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[50]  Jens Schröter,et al.  Sequential weak constraint parameter estimation in an ecosystem model , 2003 .

[51]  George M. Hornberger,et al.  Identification of photosynthesis-light models for aquatic systems II. Application to a macrophyte dominated stream , 1984 .