Geometric and Topological Inference

Geometric and topological inference deals with the retrieval of information about a geometric object that is only known through a finite set of possibly noisy sample points. Geometric and topological inference employs many tools from Computational Geometry and Applied Topology. It has connections to Manifold Learning and provides the mathematical and algorithmic foundations of the rapidly evolving field of Topological Data Analysis. Building on a rigorous treatment of simplicial complexes and distance functions, this book covers various aspects of the field, from data representation and combinatorial questions to manifold reconstruction and persistent homology. This first book on the subject can serve for teaching in a mathematical or computer science department, and will benefit to scientists and engineers interested in a geometric approach to Data Science.

[1]  L. Devroye,et al.  A weighted k-nearest neighbor density estimate for geometric inference , 2011 .

[2]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[3]  Thomas Martinetz,et al.  Topology representing networks , 1994, Neural Networks.

[4]  Jean-Daniel Boissonnat,et al.  Manifold Reconstruction Using Tangential Delaunay Complexes , 2010, Discret. Comput. Geom..

[5]  A. Petrunin Semiconcave Functions in Alexandrov???s Geometry , 2013, 1304.0292.

[6]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[7]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[8]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[9]  J. Fu,et al.  Convergence of curvatures in secant approximations , 1993 .

[10]  Jean-Daniel Boissonnat,et al.  Building Efficient and Compact Data Structures for Simplicial Complexes , 2016, Algorithmica.

[11]  Richard Nock,et al.  On Bregman Voronoi diagrams , 2007, SODA '07.

[12]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[13]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[14]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[15]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[16]  Jean-Daniel Boissonnat,et al.  Delaunay stability via perturbations , 2014, Int. J. Comput. Geom. Appl..

[17]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[18]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[19]  Jean-Daniel Boissonnat,et al.  A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations , 2015, ESA.

[20]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[21]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[22]  K. Grove Critical point theory for distance functions , 1993 .

[23]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[24]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[25]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Jonathan Richard Shewchuk,et al.  Star splaying: an algorithm for repairing delaunay triangulations and convex hulls , 2005, SCG.

[27]  André Lieutier,et al.  Efficient Data Structure for Representing and Simplifying Simplicial complexes in High Dimensions , 2012, Int. J. Comput. Geom. Appl..

[28]  Xiang-Yang Li Generating Well-Shaped d-dimensional Delaunay Meshes , 2001, COCOON.

[29]  Joachim Giesen,et al.  The flow complex: a data structure for geometric modeling , 2003, SODA '03.

[30]  J. Boissonnat,et al.  Delaunay triangulation of a random sample of a good sample has linear size , 2017 .

[31]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[32]  Daniel Freedman,et al.  Efficient Simplicial Reconstructions of Manifolds from Their Samples , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[34]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[35]  Leonidas J. Guibas,et al.  Witnessed k-Distance , 2011, Discrete & Computational Geometry.

[36]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[37]  H. Edelsbrunner Surface Reconstruction by Wrapping Finite Sets in Space , 2003 .

[38]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[39]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[40]  Herbert Edelsbrunner,et al.  Topological Data Analysis with Bregman Divergences , 2017, Symposium on Computational Geometry.

[41]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[42]  Mariette Yvinec,et al.  Triangulations in CGAL , 2002, Comput. Geom..

[43]  Frédéric Chazal,et al.  Shape smoothing using double offsets , 2007, Symposium on Solid and Physical Modeling.

[44]  Jean-Daniel Boissonnat,et al.  Delaunay Triangulation of Manifolds , 2013, Found. Comput. Math..

[45]  J. Gallier Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations , 2008, 0805.0292.

[46]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[47]  Xiang-Yang Li,et al.  Smoothing and cleaning up slivers , 2000, STOC '00.

[48]  D. Pedoe,et al.  Geometry, a comprehensive course , 1988 .

[49]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[50]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[51]  Frédéric Chazal,et al.  Deconvolution for the Wasserstein Metric and Geometric Inference , 2011, GSI.

[52]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.

[53]  Vin de Silva,et al.  A weak characterisation of the Delaunay triangulation , 2008 .

[54]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[55]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[56]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[57]  Ramsay Dyer,et al.  Riemannian simplices and triangulations , 2015 .

[58]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[59]  Frédéric Chazal,et al.  Convergence rates for persistence diagram estimation in topological data analysis , 2014, J. Mach. Learn. Res..

[60]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[61]  I. Holopainen Riemannian Geometry , 1927, Nature.

[62]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[63]  Frédéric Chazal,et al.  Stability of Curvature Measures , 2008, Comput. Graph. Forum.

[64]  J. Boissonnat,et al.  Curved Voronoi diagrams , 2006 .

[65]  Guillermo Sapiro,et al.  Dimensionality Reduction via Subspace and Submanifold Learning [From the Guest Editors] , 2011, IEEE Signal Process. Mag..

[66]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[67]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[68]  William Fulton Algebraic Topology: A First Course , 1995 .

[69]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[70]  Frédéric Chazal,et al.  Rates of convergence for robust geometric inference , 2015, ArXiv.

[71]  Andrew J. Blumberg,et al.  Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces , 2012, Found. Comput. Math..

[72]  Mariette Yvinec,et al.  The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.

[73]  J. Munkres,et al.  Elementary Differential Topology. , 1967 .

[74]  Herbert Edelsbrunner,et al.  Weak witnesses for Delaunay triangulations of submanifolds , 2007, Symposium on Solid and Physical Modeling.

[75]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[76]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[77]  Raimund Seidel,et al.  The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..

[78]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[79]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[80]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[81]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2009, Discret. Comput. Geom..

[82]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[83]  André Lieutier,et al.  Any open bounded subset of Rn has the same homotopy type as its medial axis , 2004, Comput. Aided Des..

[84]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[85]  H. Edelsbrunner,et al.  Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.

[86]  David Eppstein,et al.  Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time , 2010, Exact Complexity of NP-hard Problems.

[87]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .

[88]  J. Fu,et al.  Tubular neighborhoods in Euclidean spaces , 1985 .

[89]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[90]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[91]  Jeff Cheeger,et al.  Critical points of distance functions and applications to geometry , 1991 .

[92]  H. Edelsbrunner The union of balls and its dual shape , 1995 .

[93]  Frédéric Chazal,et al.  Normal cone approximation and offset shape isotopy , 2009, Comput. Geom..

[94]  Steve Oudot,et al.  Efficient and robust persistent homology for measures , 2013, Comput. Geom..

[95]  R. Ho Algebraic Topology , 2022 .

[96]  Michael Werman,et al.  A Unified Approach to the Change of Resolution: Space and Gray-Level , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[97]  Frédéric Chazal,et al.  Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..

[98]  Frédéric Chazal,et al.  Stability and Computation of Topological Invariants of Solids in ${\Bbb R}^n$ , 2007, Discret. Comput. Geom..

[99]  Guillermo Sapiro,et al.  Dimensionality Reduction via Subspace and Submanifold Learning , 2011 .

[100]  J. Whitehead On C 1 -Complexes , 1940 .

[101]  Herbert Edelsbrunner,et al.  On the Definition and the Construction of Pockets in Macromolecules , 1998, Discret. Appl. Math..

[102]  Mariette Yvinec,et al.  Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..

[103]  S. S. Cairns,et al.  A simple triangulation method for smooth manifolds , 1961 .

[104]  Patrizio Frosini,et al.  Size theory as a topological tool for computer vision , 1999 .

[105]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[106]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[107]  Jean-Daniel Boissonnat,et al.  The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, Algorithmica.

[108]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[109]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[110]  H. Whitney Geometric Integration Theory , 1957 .

[111]  Jean-Daniel Boissonnat,et al.  Local criteria for triangulation of manifolds , 2018, SoCG.

[112]  Jean-Daniel Boissonnat,et al.  The reach, metric distortion, geodesic convexity and the variation of tangent spaces , 2019, Journal of Applied and Computational Topology.

[113]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[114]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[115]  Jean-Daniel Boissonnat,et al.  A coordinate system associated with points scattered on a surface , 2004, Comput. Aided Des..

[116]  C. Villani Topics in Optimal Transportation , 2003 .

[117]  Robin A. Moser A constructive proof of the Lovász local lemma , 2008, STOC '09.

[118]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[119]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[120]  Jean-Daniel Boissonnat,et al.  The stability of Delaunay Triangulations , 2013, Int. J. Comput. Geom. Appl..

[121]  A. Vacavant,et al.  Reconstructions of Noisy Digital Contours with Maximal Primitives Based on Multi-Scale/Irregular Geometric Representation and Generalized Linear Programming , 2017 .

[122]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[123]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[124]  Joachim Giesen,et al.  Shape Dimension and Intrinsic Metric from Samples of Manifolds , 2004, Discret. Comput. Geom..

[125]  F. Chazal,et al.  The λ-medial axis , 2005 .

[126]  Rolf Klein,et al.  Voronoi Diagrams and Delaunay Triangulations , 2013, Encyclopedia of Algorithms.

[127]  Frédéric Chazal,et al.  Subsampling Methods for Persistent Homology , 2014, ICML.