Geometric and Topological Inference
暂无分享,去创建一个
[1] L. Devroye,et al. A weighted k-nearest neighbor density estimate for geometric inference , 2011 .
[2] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[3] Thomas Martinetz,et al. Topology representing networks , 1994, Neural Networks.
[4] Jean-Daniel Boissonnat,et al. Manifold Reconstruction Using Tangential Delaunay Complexes , 2010, Discret. Comput. Geom..
[5] A. Petrunin. Semiconcave Functions in Alexandrov???s Geometry , 2013, 1304.0292.
[6] Tamal K. Dey,et al. Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[7] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[8] Franziska Hoffmann,et al. Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .
[9] J. Fu,et al. Convergence of curvatures in secant approximations , 1993 .
[10] Jean-Daniel Boissonnat,et al. Building Efficient and Compact Data Structures for Simplicial Complexes , 2016, Algorithmica.
[11] Richard Nock,et al. On Bregman Voronoi diagrams , 2007, SODA '07.
[12] R. Sibson,et al. A brief description of natural neighbor interpolation , 1981 .
[13] Frédéric Chazal,et al. Geometric Inference for Probability Measures , 2011, Found. Comput. Math..
[14] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[15] Steve Oudot,et al. The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.
[16] Jean-Daniel Boissonnat,et al. Delaunay stability via perturbations , 2014, Int. J. Comput. Geom. Appl..
[17] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[18] N. Alon,et al. The Probabilistic Method: Alon/Probabilistic , 2008 .
[19] Jean-Daniel Boissonnat,et al. A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations , 2015, ESA.
[20] Sariel Har-Peled,et al. Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.
[21] C. Villani,et al. Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.
[22] K. Grove. Critical point theory for distance functions , 1993 .
[23] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[24] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[25] R. Sibson. A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[26] Jonathan Richard Shewchuk,et al. Star splaying: an algorithm for repairing delaunay triangulations and convex hulls , 2005, SCG.
[27] André Lieutier,et al. Efficient Data Structure for Representing and Simplifying Simplicial complexes in High Dimensions , 2012, Int. J. Comput. Geom. Appl..
[28] Xiang-Yang Li. Generating Well-Shaped d-dimensional Delaunay Meshes , 2001, COCOON.
[29] Joachim Giesen,et al. The flow complex: a data structure for geometric modeling , 2003, SODA '03.
[30] J. Boissonnat,et al. Delaunay triangulation of a random sample of a good sample has linear size , 2017 .
[31] J. Boissonnat,et al. Algorithmic Geometry: Frontmatter , 1998 .
[32] Daniel Freedman,et al. Efficient Simplicial Reconstructions of Manifolds from Their Samples , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[33] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[34] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[35] Leonidas J. Guibas,et al. Witnessed k-Distance , 2011, Discrete & Computational Geometry.
[36] R. Seidel. A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .
[37] H. Edelsbrunner. Surface Reconstruction by Wrapping Finite Sets in Space , 2003 .
[38] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[39] Leonidas J. Guibas,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.
[40] Herbert Edelsbrunner,et al. Topological Data Analysis with Bregman Divergences , 2017, Symposium on Computational Geometry.
[41] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[42] Mariette Yvinec,et al. Triangulations in CGAL , 2002, Comput. Geom..
[43] Frédéric Chazal,et al. Shape smoothing using double offsets , 2007, Symposium on Solid and Physical Modeling.
[44] Jean-Daniel Boissonnat,et al. Delaunay Triangulation of Manifolds , 2013, Found. Comput. Math..
[45] J. Gallier. Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations , 2008, 0805.0292.
[46] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..
[47] Xiang-Yang Li,et al. Smoothing and cleaning up slivers , 2000, STOC '00.
[48] D. Pedoe,et al. Geometry, a comprehensive course , 1988 .
[49] Sivaraman Balakrishnan,et al. Confidence sets for persistence diagrams , 2013, The Annals of Statistics.
[50] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[51] Frédéric Chazal,et al. Deconvolution for the Wasserstein Metric and Geometric Inference , 2011, GSI.
[52] Steve Oudot,et al. Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.
[53] Vin de Silva,et al. A weak characterisation of the Delaunay triangulation , 2008 .
[54] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[55] P. Cannarsa,et al. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .
[56] Jean-Daniel Boissonnat,et al. Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.
[57] Ramsay Dyer,et al. Riemannian simplices and triangulations , 2015 .
[58] Robert Schrader,et al. On the curvature of piecewise flat spaces , 1984 .
[59] Frédéric Chazal,et al. Convergence rates for persistence diagram estimation in topological data analysis , 2014, J. Mach. Learn. Res..
[60] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[61] I. Holopainen. Riemannian Geometry , 1927, Nature.
[62] Ketan Mulmuley,et al. Computational geometry - an introduction through randomized algorithms , 1993 .
[63] Frédéric Chazal,et al. Stability of Curvature Measures , 2008, Comput. Graph. Forum.
[64] J. Boissonnat,et al. Curved Voronoi diagrams , 2006 .
[65] Guillermo Sapiro,et al. Dimensionality Reduction via Subspace and Submanifold Learning [From the Guest Editors] , 2011, IEEE Signal Process. Mag..
[66] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1994, ACM Trans. Graph..
[67] Steve Oudot,et al. Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.
[68] William Fulton. Algebraic Topology: A First Course , 1995 .
[69] Steve Oudot,et al. Persistence stability for geometric complexes , 2012, ArXiv.
[70] Frédéric Chazal,et al. Rates of convergence for robust geometric inference , 2015, ArXiv.
[71] Andrew J. Blumberg,et al. Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces , 2012, Found. Comput. Math..
[72] Mariette Yvinec,et al. The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.
[73] J. Munkres,et al. Elementary Differential Topology. , 1967 .
[74] Herbert Edelsbrunner,et al. Weak witnesses for Delaunay triangulations of submanifolds , 2007, Symposium on Solid and Physical Modeling.
[75] Russ Bubley,et al. Randomized algorithms , 1995, CSUR.
[76] David G. Kirkpatrick,et al. On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.
[77] Raimund Seidel,et al. The Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version , 1995, Comput. Geom..
[78] Tomás Feder,et al. Optimal algorithms for approximate clustering , 1988, STOC '88.
[79] Herbert Edelsbrunner,et al. Sliver exudation , 2000, J. ACM.
[80] Tamal K. Dey,et al. Manifold reconstruction from point samples , 2005, SODA '05.
[81] Frédéric Chazal,et al. A Sampling Theory for Compact Sets in Euclidean Space , 2009, Discret. Comput. Geom..
[82] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[83] André Lieutier,et al. Any open bounded subset of Rn has the same homotopy type as its medial axis , 2004, Comput. Aided Des..
[84] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[85] H. Edelsbrunner,et al. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.
[86] David Eppstein,et al. Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time , 2010, Exact Complexity of NP-hard Problems.
[87] John R. Harper,et al. Algebraic topology : a first course , 1982 .
[88] J. Fu,et al. Tubular neighborhoods in Euclidean spaces , 1985 .
[89] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[90] Leonidas J. Guibas,et al. Proximity of persistence modules and their diagrams , 2009, SCG '09.
[91] Jeff Cheeger,et al. Critical points of distance functions and applications to geometry , 1991 .
[92] H. Edelsbrunner. The union of balls and its dual shape , 1995 .
[93] Frédéric Chazal,et al. Normal cone approximation and offset shape isotopy , 2009, Comput. Geom..
[94] Steve Oudot,et al. Efficient and robust persistent homology for measures , 2013, Comput. Geom..
[95] R. Ho. Algebraic Topology , 2022 .
[96] Michael Werman,et al. A Unified Approach to the Change of Resolution: Space and Gray-Level , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[97] Frédéric Chazal,et al. Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..
[98] Frédéric Chazal,et al. Stability and Computation of Topological Invariants of Solids in ${\Bbb R}^n$ , 2007, Discret. Comput. Geom..
[99] Guillermo Sapiro,et al. Dimensionality Reduction via Subspace and Submanifold Learning , 2011 .
[100] J. Whitehead. On C 1 -Complexes , 1940 .
[101] Herbert Edelsbrunner,et al. On the Definition and the Construction of Pockets in Macromolecules , 1998, Discret. Appl. Math..
[102] Mariette Yvinec,et al. Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..
[103] S. S. Cairns,et al. A simple triangulation method for smooth manifolds , 1961 .
[104] Patrizio Frosini,et al. Size theory as a topological tool for computer vision , 1999 .
[105] R. Rockafellar. Convex Analysis: (pms-28) , 1970 .
[106] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[107] Jean-Daniel Boissonnat,et al. The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, Algorithmica.
[108] Leonidas J. Guibas,et al. Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.
[109] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[110] H. Whitney. Geometric Integration Theory , 1957 .
[111] Jean-Daniel Boissonnat,et al. Local criteria for triangulation of manifolds , 2018, SoCG.
[112] Jean-Daniel Boissonnat,et al. The reach, metric distortion, geodesic convexity and the variation of tangent spaces , 2019, Journal of Applied and Computational Topology.
[113] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[114] Stephen Smale,et al. Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..
[115] Jean-Daniel Boissonnat,et al. A coordinate system associated with points scattered on a surface , 2004, Comput. Aided Des..
[116] C. Villani. Topics in Optimal Transportation , 2003 .
[117] Robin A. Moser. A constructive proof of the Lovász local lemma , 2008, STOC '09.
[118] Vin de Silva,et al. Coverage in sensor networks via persistent homology , 2007 .
[119] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[120] Jean-Daniel Boissonnat,et al. The stability of Delaunay Triangulations , 2013, Int. J. Comput. Geom. Appl..
[121] A. Vacavant,et al. Reconstructions of Noisy Digital Contours with Maximal Primitives Based on Multi-Scale/Irregular Geometric Representation and Generalized Linear Programming , 2017 .
[122] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[123] Steve Oudot,et al. Provably good sampling and meshing of surfaces , 2005, Graph. Model..
[124] Joachim Giesen,et al. Shape Dimension and Intrinsic Metric from Samples of Manifolds , 2004, Discret. Comput. Geom..
[125] F. Chazal,et al. The λ-medial axis , 2005 .
[126] Rolf Klein,et al. Voronoi Diagrams and Delaunay Triangulations , 2013, Encyclopedia of Algorithms.
[127] Frédéric Chazal,et al. Subsampling Methods for Persistent Homology , 2014, ICML.