Compact and intuitive data-driven BRDF models

Measured materials are rapidly becoming a core component in the photo-realistic image synthesis pipeline. The reason is that data-driven models can easily capture the underlying, fine details that represent the visual appearance of materials, which can be difficult or even impossible to model by hand. There are, however, a number of key challenges that need to be solved in order to enable efficient capture, representation and interaction with real materials. This paper presents two new data-driven BRDF models specifically designed for 1D separability. The proposed 3D and 2D BRDF representations can be factored into three or two 1D factors, respectively, while accurately representing the underlying BRDF data with only small approximation error. We evaluate the models using different parameterizations with different characteristics and show that both the BRDF data itself and the resulting renderings yield more accurate results in terms of both numerical errors and visual results compared to previous approaches. To demonstrate the benefit of the proposed factored models, we present a new Monte Carlo importance sampling scheme and give examples of how they can be used for efficient BRDF capture and intuitive editing of measured materials.

[1]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[2]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[3]  Iain E. G. Richardson,et al.  Video Codec Design: Developing Image and Video Compression Systems , 2002 .

[4]  James Arvo,et al.  Barycentric parameterizations for isotropic BRDFs , 2005, IEEE Transactions on Visualization and Computer Graphics.

[5]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[6]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[7]  Mateu Sbert,et al.  Adaptive multiple importance sampling for general functions , 2017, The Visual Computer.

[8]  Derek Nowrouzezahrai,et al.  A Non-Parametric Factor Microfacet Model for Isotropic BRDFs , 2016, ACM Trans. Graph..

[9]  Peter Shirley,et al.  The halfway vector disk for BRDF modeling , 2006, TOGS.

[10]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[11]  Pieter Peers,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, ACM Trans. Graph..

[12]  Frédo Durand,et al.  Experimental validation of analytical BRDF models , 2004, SIGGRAPH '04.

[13]  Todd E. Zickler,et al.  Passive Reflectometry , 2008, ECCV.

[14]  Anders Ynnerman,et al.  BRDF models for accurate and efficient rendering of glossy surfaces , 2012, TOGS.

[15]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[16]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[17]  Reinhard Klein,et al.  A compact and editable representation for measured BRDFs , 2010 .

[18]  Kun Zhou,et al.  Interactive relighting with dynamic BRDFs , 2007, SIGGRAPH 2007.

[19]  Murat Kurt,et al.  A General BRDF Representation Based on Tensor Decomposition , 2011, Comput. Graph. Forum.

[20]  Jaakko Lehtinen,et al.  Two-shot SVBRDF capture for stationary materials , 2015, ACM Trans. Graph..

[21]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[22]  Mateu Sbert,et al.  Multiple importance sampling characterization by weighted mean invariance , 2018, The Visual Computer.

[23]  Arjan Kuijper,et al.  Modeling Wavelength-dependent BRDFs as Factored Tensors for Real-time Spectral Rendering , 2010, GRAPP.

[24]  Jannik Boll Nielsen,et al.  On optimal, minimal BRDF sampling for reflectance acquisition , 2015, ACM Trans. Graph..

[25]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[26]  Pierre Poulin,et al.  Rational BRDF , 2012, IEEE Transactions on Visualization and Computer Graphics.

[27]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[28]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[29]  Ravi Ramamoorthi,et al.  Real-time BRDF editing in complex lighting , 2006, ACM Trans. Graph..

[30]  J WardGregory,et al.  Measuring and modeling anisotropic reflection , 1992 .

[31]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[32]  Giuseppe Claudio Guarnera,et al.  BRDF Representation and Acquisition , 2016, Comput. Graph. Forum.

[33]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[34]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[35]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, ACM Trans. Graph..

[36]  Greg Humphreys,et al.  Physically Based Rendering, Second Edition: From Theory To Implementation , 2010 .

[37]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[38]  Luc Van Gool,et al.  A Gaussian Process Latent Variable Model for BRDF Inference , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[39]  F. E. Nicodemus Reflectance nomenclature and directional reflectance and emissivity. , 1970, Applied optics.

[40]  Michael Goesele,et al.  Realistic materials in computer graphics , 2005, SIGGRAPH Courses.

[41]  MatusikWojciech,et al.  A data-driven reflectance model , 2003 .

[42]  Michael Wimmer,et al.  Real-time rendering of glossy materials with regular sampling , 2014, The Visual Computer.

[43]  Pieter Peers,et al.  A Compact Tucker-Based Factorization Model for Heterogeneous Subsurface Scattering , 2013, TPCG.

[44]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[45]  Pascal Barla,et al.  In Praise of an Alternative BRDF Parametrization , 2015, Material Appearance Modeling.

[46]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[47]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[48]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[49]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[50]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, SIGGRAPH 2006.

[51]  Romain Pacanowski,et al.  A two-scale microfacet reflectance model combining reflection and diffraction , 2017, ACM Trans. Graph..

[52]  F BlinnJames Models of light reflection for computer synthesized pictures , 1977 .