Supply Chain Performance Evaluation With Rough Two-Stage Data Envelopment Analysis Model: Noncooperative Stackelberg Game Approach

[1]  Xiao-fei Ma,et al.  Evaluation of supply chain partnership based on rough set theory , 2010, 2010 IEEE 17Th International Conference on Industrial Engineering and Engineering Management.

[2]  Joe Zhu,et al.  Additive efficiency decomposition in two-stage DEA , 2009, Eur. J. Oper. Res..

[3]  Iddrisu Awudu,et al.  Uncertainties and sustainability concepts in biofuel supply chain management: A review , 2012 .

[4]  Joe Zhu,et al.  A bargaining game model for measuring performance of two-stage network structures , 2011, Eur. J. Oper. Res..

[5]  Bin Li,et al.  Rough data envelopment analysis and its application to supply chain performance evaluation , 2009 .

[6]  David J. Murphy,et al.  Purchasing performance evaluation: with data envelopment analysis , 2002 .

[7]  Anthony D. Ross,et al.  An integrated benchmarking approach to distribution center performance using DEA modeling , 2002 .

[8]  He-Yau Kang,et al.  A new supplier performance evaluation model: A case study of integrated circuit (IC) packaging companies , 2010, Kybernetes.

[9]  C. Weber,et al.  Determination of paths to vendor market efficiency using parallel coordinates representation: A negotiation tool for buyers , 1996 .

[10]  Kuan Yew Wong,et al.  Supply chain performance measurement system using DEA modeling , 2007, Ind. Manag. Data Syst..

[11]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[12]  Kin Keung Lai,et al.  A Rough Set Approach on Supply Chain Dynamic Performance Measurement , 2008, KES-AMSTA.

[13]  Magnus Tambour,et al.  Productivity and customer satisfaction in Swedish pharmacies: A DEA network model , 1999, Eur. J. Oper. Res..

[14]  M. Christopher Logistics and supply chain management , 2011 .

[15]  Walter Ukovich,et al.  DEA-like models for the efficiency evaluation of hierarchically structured units , 2004, Eur. J. Oper. Res..

[16]  Joe Zhu,et al.  DEA models for two‐stage processes: Game approach and efficiency decomposition , 2008 .

[17]  William W. Cooper,et al.  Handbook on data envelopment analysis , 2011 .

[18]  Josefa Mula,et al.  Quantitative models for supply chain planning under uncertainty: a review , 2009 .

[19]  Wenli Li,et al.  Collaborative production planning of supply chain under price and demand uncertainty , 2011, Eur. J. Oper. Res..

[20]  Ali Azadeh,et al.  A flexible deterministic, stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis , 2010, Expert Syst. Appl..

[21]  R. Färe,et al.  PRODUCTIVITY AND INTERMEDIATE PRODUCTS: A FRONTIER APPROACH , 1995 .

[22]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[23]  Desheng Dash Wu,et al.  Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations , 2009, Eur. J. Oper. Res..

[24]  Jian-Bo Yang,et al.  Interval efficiency assessment using data envelopment analysis , 2005, Fuzzy Sets Syst..

[25]  Srinivas Talluri,et al.  Vendor Performance With Supply Risk: A Chance-Constrained DEA Approach , 2006 .

[26]  Hiroshi Tsuji,et al.  Data envelopment analysis for a supply chain , 2010, Artificial Life and Robotics.

[27]  Rong Cao,et al.  Application of Rough Set-SVM Model in the Performance Evaluation of Supply Chain , 2010, 2010 International Symposium on Intelligence Information Processing and Trusted Computing.

[28]  David L. Olson,et al.  A comparison of stochastic dominance and stochastic DEA for vendor evaluation , 2008 .

[29]  Joe Zhu,et al.  DEA models for supply chain efficiency evaluation , 2006, Ann. Oper. Res..

[30]  Hong Yan,et al.  Network DEA model for supply chain performance evaluation , 2011, Eur. J. Oper. Res..

[31]  Greg N. Gregoriou,et al.  Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets , 2008, The Journal of Wealth Management.

[32]  Marvin D. Troutt,et al.  Optimal throughput for multistage input-output processes , 2001 .