On Computing the Multiplicity of Cycles in Bipartite Graphs Using the Degree Distribution and the Spectrum of the Graph

Counting short cycles in bipartite graphs is a fundamental problem of interest in the analysis and design of low-density parity-check codes. The vast majority of research in this area is focused on algorithmic techniques. Most recently, Blake and Lin proposed a computational technique to count the number of cycles of length <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {g}$ </tex-math></inline-formula> in a bi-regular bipartite graph, where <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {g}$ </tex-math></inline-formula> is the girth of the graph. The information required for the computation is the node degree and the multiplicity of the nodes on both sides of the partition, as well as the eigenvalues of the adjacency matrix of the graph (graph spectrum). In this paper, the result of Blake and Lin is extended to compute the number of cycles of length <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {g} + \textbf {2}, \ldots, \textbf {2}\boldsymbol {g}-\textbf {2}$ </tex-math></inline-formula>, for bi-regular bipartite graphs, as well as the number of 4-cycles and 6-cycles in irregular and half-regular bipartite graphs, with <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {g} \geq \textbf {4}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {g} \geq \textbf {6}$ </tex-math></inline-formula>, respectively.

[1]  Amir H. Banihashemi,et al.  On the Tanner Graph Cycle Distribution of Random LDPC, Random Protograph-Based LDPC, and Random Quasi-Cyclic LDPC Code Ensembles , 2017, IEEE Transactions on Information Theory.

[2]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[3]  Hua Xiao,et al.  Error rate estimation of low-density parity-check codes on binary symmetric channels using cycle enumeration , 2009, IEEE Transactions on Communications.

[4]  Amir H. Banihashemi,et al.  New Characterization and Efficient Exhaustive Search Algorithm for Leafless Elementary Trapping Sets of Variable-Regular LDPC Codes , 2016, IEEE Transactions on Information Theory.

[5]  Amir H. Banihashemi,et al.  Lowering the error floor of LDPC codes using cyclic liftings , 2010, 2010 IEEE International Symposium on Information Theory.

[6]  B. McKay,et al.  Constructing cospectral graphs , 1982 .

[7]  Amir H. Banihashemi,et al.  Counting Short Cycles of Quasi Cyclic Protograph LDPC Codes , 2012, IEEE Communications Letters.

[8]  Amir H. Banihashemi,et al.  On the girth of quasi cyclic protograph LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[10]  J. Seidel Graphs and two-graphs , 1974 .

[11]  W. Haemers,et al.  Which graphs are determined by their spectrum , 2003 .

[12]  David J. C. MacKay,et al.  Encyclopedia of Sparse Graph Codes , 1999 .

[13]  Haiko Müller,et al.  Hamiltonian circuits in chordal bipartite graphs , 1996, Discret. Math..

[14]  Amir H. Banihashemi,et al.  On Characterization and Efficient Exhaustive Search of Elementary Trapping Sets of Variable-Regular LDPC Codes , 2015, IEEE Communications Letters.

[15]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[16]  Amir H. Banihashemi,et al.  On Characterization of Elementary Trapping Sets of Variable-Regular LDPC Codes , 2013, IEEE Transactions on Information Theory.

[17]  Keith M. Chugg,et al.  An algorithm for counting short cycles in bipartite graphs , 2006, IEEE Transactions on Information Theory.

[18]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[19]  Amir H. Banihashemi,et al.  Message-Passing Algorithms for Counting Short Cycles in a Graph , 2010, IEEE Transactions on Communications.

[20]  Amir H. Banihashemi,et al.  An efficient algorithm for finding dominant trapping sets of LDPC codes , 2011, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[21]  Shu Lin,et al.  On Short Cycle Enumeration in Biregular Bipartite Graphs , 2017, IEEE Transactions on Information Theory.

[22]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[23]  Amir H. Banihashemi,et al.  Characterization of Elementary Trapping Sets in Irregular LDPC Codes and the Corresponding Efficient Exhaustive Search Algorithms , 2018, IEEE Transactions on Information Theory.

[24]  Amir H. Banihashemi,et al.  A heuristic search for good low-density parity-check codes at short block lengths , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).