Rényi Entropies and Nonlinear Diffusion Equations

Since their introduction in the early sixties (Rényi in Proc. Fourth Berkeley Symp. Math. Statist. Prob., vol. 1, pp. 547–561, 1961), the Rényi entropies have been used in many contexts, ranging from information theory to astrophysics, turbulence phenomena and others. In this note, we enlighten the main connections between Rényi entropies and nonlinear diffusion equations. In particular, it is shown that these relationships allow to prove various functional inequalities in sharp form.

[1]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[2]  Max H. M. Costa,et al.  A new entropy power inequality , 1985, IEEE Trans. Inf. Theory.

[3]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[4]  Adrien Blanchet,et al.  Asymptotics of the Fast Diffusion Equation via Entropy Estimates , 2007, 0704.2372.

[5]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[6]  Giuseppe Toscani,et al.  A central limit theorem for solutions of the porous medium equation , 2005 .

[7]  J. Carrillo,et al.  Rényi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations , 2014, 1403.3128.

[8]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[9]  A. Rényi On Measures of Entropy and Information , 1961 .

[10]  H. McKean Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .

[11]  Giuseppe Toscani,et al.  The Concavity of Rényi Entropy Power , 2014, IEEE Transactions on Information Theory.

[12]  G. Crooks On Measures of Entropy and Information , 2015 .

[13]  Giuseppe Toscani,et al.  Lyapunov functionals for the heat equation and sharp inequalities , 2013 .

[14]  D. Aronson The porous medium equation , 1986 .

[15]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[16]  Alfred O. Hero,et al.  On Solutions to Multivariate Maximum alpha-Entropy Problems , 2003, EMMCVPR.

[17]  C. Villani,et al.  A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .

[18]  Marco Di Francesco,et al.  Intermediate Asymptotics Beyond Homogeneity and Self-Similarity: Long Time Behavior for ut = Δϕ(u) , 2006 .

[19]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[20]  J. Linnik An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .

[21]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[22]  T. Aubin,et al.  Problèmes isopérimétriques et espaces de Sobolev , 1976 .

[23]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[24]  J. Dolbeault,et al.  Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities , 2009, Proceedings of the National Academy of Sciences.

[25]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[26]  Giuseppe Toscani,et al.  An information-theoretic proof of Nash's inequality , 2012, ArXiv.

[27]  Cédric Villani,et al.  A short proof of the "Concavity of entropy power" , 2000, IEEE Trans. Inf. Theory.

[28]  Manuel del Pino,et al.  Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .

[29]  Erwin Lutwak,et al.  Moment-Entropy Inequalities for a Random Vector , 2007, IEEE Transactions on Information Theory.

[30]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[31]  Erwin Lutwak,et al.  Crame/spl acute/r-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information , 2005, IEEE Transactions on Information Theory.

[32]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .

[33]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .