Rényi Entropies and Nonlinear Diffusion Equations
暂无分享,去创建一个
[1] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[2] Max H. M. Costa,et al. A new entropy power inequality , 1985, IEEE Trans. Inf. Theory.
[3] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[4] Adrien Blanchet,et al. Asymptotics of the Fast Diffusion Equation via Entropy Estimates , 2007, 0704.2372.
[5] G. Talenti,et al. Best constant in Sobolev inequality , 1976 .
[6] Giuseppe Toscani,et al. A central limit theorem for solutions of the porous medium equation , 2005 .
[7] J. Carrillo,et al. Rényi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations , 2014, 1403.3128.
[8] C. Tsallis. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .
[9] A. Rényi. On Measures of Entropy and Information , 1961 .
[10] H. McKean. Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .
[11] Giuseppe Toscani,et al. The Concavity of Rényi Entropy Power , 2014, IEEE Transactions on Information Theory.
[12] G. Crooks. On Measures of Entropy and Information , 2015 .
[13] Giuseppe Toscani,et al. Lyapunov functionals for the heat equation and sharp inequalities , 2013 .
[14] D. Aronson. The porous medium equation , 1986 .
[15] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[16] Alfred O. Hero,et al. On Solutions to Multivariate Maximum alpha-Entropy Problems , 2003, EMMCVPR.
[17] C. Villani,et al. A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .
[18] Marco Di Francesco,et al. Intermediate Asymptotics Beyond Homogeneity and Self-Similarity: Long Time Behavior for ut = Δϕ(u) , 2006 .
[19] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[20] J. Linnik. An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .
[21] Nelson M. Blachman,et al. The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.
[22] T. Aubin,et al. Problèmes isopérimétriques et espaces de Sobolev , 1976 .
[23] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[24] J. Dolbeault,et al. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities , 2009, Proceedings of the National Academy of Sciences.
[25] Amir Dembo,et al. Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.
[26] Giuseppe Toscani,et al. An information-theoretic proof of Nash's inequality , 2012, ArXiv.
[27] Cédric Villani,et al. A short proof of the "Concavity of entropy power" , 2000, IEEE Trans. Inf. Theory.
[28] Manuel del Pino,et al. Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .
[29] Erwin Lutwak,et al. Moment-Entropy Inequalities for a Random Vector , 2007, IEEE Transactions on Information Theory.
[30] J. Vázquez. The Porous Medium Equation: Mathematical Theory , 2006 .
[31] Erwin Lutwak,et al. Crame/spl acute/r-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information , 2005, IEEE Transactions on Information Theory.
[32] J. A. Carrillo,et al. Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .
[33] G. I. Barenblatt. Scaling: Self-similarity and intermediate asymptotics , 1996 .