In-plane shear test of thin panels

Efficient application of thin-gage composite materials to helicopter fuselage structures necessitates that the materials be designed to operate at loads several times higher than initial buckling load. Methods are required to accurately measure and predict the response of thin-gage composites when subjected to these loads. This paper presents the results of an analytical and experimental study of the behavior of thin-gage composite panels subjected to in-plane shear loads. Finite-element stress analyses were used to aid in the design of an improved shear fixture that minimizes adverse corner stresses and tearing and crimping failure-modes characteristic of commonly used shear fixtures. Tests of thick buckle-resistant aluminum panels and thin aluminum and composite panels were conducted to verify the fixture design. Results of finite-element stress and buckling analyses and diagonal-tension-theory predictions are presented. Correlation of experimental data with analysis indicated that diagonal-tension theory can be used to predict the load-strain response of thin composite panels.