Discrete Compactness for the hp Version of Rectangular Edge Finite Elements
暂无分享,去创建一个
Martin Costabel | Monique Dauge | Daniele Boffi | Leszek F. Demkowicz | L. Demkowicz | D. Boffi | M. Costabel | M. Dauge
[1] F. Kikuchi. On a discrete compactness property for the Nedelec finite elements , 1989 .
[2] L. Demkowicz,et al. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .
[3] D. Arnold. Differential complexes and numerical stability , 2002, math/0212391.
[4] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[5] Mark Ainsworth,et al. hp-Approximation Theory for BDFM and RT Finite Elements on Quadrilaterals , 2002, SIAM J. Numer. Anal..
[6] Peter Monk,et al. On the p- and hp-extension of Nédélec's curl-conforming elements , 1994 .
[7] Salvatore Caorsi,et al. On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..
[8] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[9] Leszek Demkowicz,et al. Fully automatic hp-adaptivity for Maxwell's equations , 2005 .
[10] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[11] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .
[12] C. Schwab,et al. EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS , 2005 .
[13] Jacques Rappaz,et al. Spectral Approximation .1. Problem of Convergence , 1978 .
[14] Daniele Boffi,et al. Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.
[15] M. Raffetto,et al. Counterexamples to the currently accepted explanation for spurious modes and necessary and sufficient conditions to avoid them , 2002 .
[16] Douglas N. Arnold,et al. Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..
[17] Daniele Boffi,et al. EDGE ELEMENT COMPUTATION OF MAXWELL'S EIGENVALUES ON GENERAL QUADRILATERAL MESHES , 2006 .
[18] Leszek F. Demkowicz,et al. p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..
[19] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[20] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[21] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[22] L. Demkowicz,et al. De Rham diagram for hp finite element spaces , 2000 .
[23] Leszek Demkowicz,et al. H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .
[24] Ralf Hiptmair,et al. Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.
[25] L. Demkowicz,et al. An hp-adaptive finite element method for electromagnetics: Part 1: Data structure and constrained approximation , 2000 .
[26] Daniele Boffi,et al. EDGE FINITE ELEMENTS FOR THE APPROXIMATION OF MAXWELL RESOLVENT OPERATOR , 2002 .
[27] Martin Costabel,et al. Computation of resonance frequencies for Maxwell equations in non-smooth domains , 2003 .
[28] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[29] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[30] Martin Costabel,et al. DISCRETE COMPACTNESS FOR p AND hp 2D EDGE FINITE ELEMENTS , 2003 .
[31] Francesca Gardini,et al. Discrete compactness property for quadrilateral finite element spaces , 2005 .
[32] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[33] Annalisa Buffa,et al. Algebraic convergence for anisotropic edge elements in polyhedral domains , 2005, Numerische Mathematik.
[34] Peter Monk,et al. Discrete compactness and the approximation of Maxwell's equations in R3 , 2001, Math. Comput..
[35] Daniel Boffi,et al. A note on the deRham complex and a discrete compactness property , 1999, Appl. Math. Lett..