Discrete Compactness for the hp Version of Rectangular Edge Finite Elements

Discretization of Maxwell eigenvalue problems with edge finite elements involves a simultaneous use of two discrete subspaces of H1 and H(curl), reproducing the exact sequence condition. Kikuchi's discrete compactness property, along with appropriate approximability conditions, implies the convergence of discrete eigenpairs to the exact ones. In this paper we prove the discrete compactness property for the edge element approximation of Maxwell's eigenpairs on general hp adaptive rectangular meshes. Hanging nodes, yielding 1-irregular meshes, are covered, and the order of the used elements can vary from one rectangle to another, thus allowing for a real hp adaptivity. As a particular case, our analysis covers the convergence result for the p-method.

[1]  F. Kikuchi On a discrete compactness property for the Nedelec finite elements , 1989 .

[2]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[3]  D. Arnold Differential complexes and numerical stability , 2002, math/0212391.

[4]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[5]  Mark Ainsworth,et al.  hp-Approximation Theory for BDFM and RT Finite Elements on Quadrilaterals , 2002, SIAM J. Numer. Anal..

[6]  Peter Monk,et al.  On the p- and hp-extension of Nédélec's curl-conforming elements , 1994 .

[7]  Salvatore Caorsi,et al.  On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..

[8]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[9]  Leszek Demkowicz,et al.  Fully automatic hp-adaptivity for Maxwell's equations , 2005 .

[10]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[11]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[12]  C. Schwab,et al.  EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS , 2005 .

[13]  Jacques Rappaz,et al.  Spectral Approximation .1. Problem of Convergence , 1978 .

[14]  Daniele Boffi,et al.  Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.

[15]  M. Raffetto,et al.  Counterexamples to the currently accepted explanation for spurious modes and necessary and sufficient conditions to avoid them , 2002 .

[16]  Douglas N. Arnold,et al.  Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..

[17]  Daniele Boffi,et al.  EDGE ELEMENT COMPUTATION OF MAXWELL'S EIGENVALUES ON GENERAL QUADRILATERAL MESHES , 2006 .

[18]  Leszek F. Demkowicz,et al.  p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..

[19]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[20]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[21]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[22]  L. Demkowicz,et al.  De Rham diagram for hp finite element spaces , 2000 .

[23]  Leszek Demkowicz,et al.  H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .

[24]  Ralf Hiptmair,et al.  Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.

[25]  L. Demkowicz,et al.  An hp-adaptive finite element method for electromagnetics: Part 1: Data structure and constrained approximation , 2000 .

[26]  Daniele Boffi,et al.  EDGE FINITE ELEMENTS FOR THE APPROXIMATION OF MAXWELL RESOLVENT OPERATOR , 2002 .

[27]  Martin Costabel,et al.  Computation of resonance frequencies for Maxwell equations in non-smooth domains , 2003 .

[28]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[29]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[30]  Martin Costabel,et al.  DISCRETE COMPACTNESS FOR p AND hp 2D EDGE FINITE ELEMENTS , 2003 .

[31]  Francesca Gardini,et al.  Discrete compactness property for quadrilateral finite element spaces , 2005 .

[32]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[33]  Annalisa Buffa,et al.  Algebraic convergence for anisotropic edge elements in polyhedral domains , 2005, Numerische Mathematik.

[34]  Peter Monk,et al.  Discrete compactness and the approximation of Maxwell's equations in R3 , 2001, Math. Comput..

[35]  Daniel Boffi,et al.  A note on the deRham complex and a discrete compactness property , 1999, Appl. Math. Lett..