Relation between the Liquid Spinodal Pressure and the Lateral Pressure Profile at the Liquid–Vapor Interface

Computer simulations of the liquid–vapor interface of the Lennard-Jones fluid and SPC/E water are performed on the (N,V,T) ensemble at various temperatures, in order to compare the minimum of the lateral pressure profile with the spinodal pressure. Our results show that these two pressures agree within error bars for water in a rather broad range of temperatures, but only a direct proportionality between these values is found in the case of the Lennard-Jones system. Our results might offer a novel tool to estimate the spinodal line in situations of practical relevance.

[1]  A. R. Imre,et al.  Estimation of the liquid-vapor spinodal from interfacial properties obtained from molecular dynamics and lattice Boltzmann simulations. , 2008, The Journal of chemical physics.

[2]  A. R. Imre,et al.  Liquid-vapour spinodal of pure helium 4 , 2008 .

[3]  J. Caillol,et al.  Critical-point of the Lennard-Jones fluid: A finite-size scaling study , 1998 .

[4]  J. Henderson,et al.  Statistical mechanics of inhomogeneous fluids , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  Tasneem Abbasi,et al.  Accidental risk of superheated liquids and a framework for predicting the superheat limit , 2007 .

[6]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[7]  A. Harasima Molecular Theory of Surface Tension , 2007 .

[8]  Gary S Grest,et al.  Application of Ewald summations to long-range dispersion forces. , 2007, The Journal of chemical physics.

[9]  H. Eugene Stanley,et al.  Phase behaviour of metastable water , 1992, Nature.

[10]  H. Eugene Stanley,et al.  Static and dynamic properties of stretched water , 2001, cond-mat/0102196.

[11]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[12]  P. Jedlovszky,et al.  Pressure Profile Calculation with Mesh Ewald Methods. , 2016, Journal of chemical theory and computation.

[13]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[14]  Spinodal of supercooled polarizable water. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  The Ice/Water Interface: Density–Temperature Phase Diagram for the SPC/E Model of Liquid Water , 2004 .

[16]  Srikanth Sastry,et al.  SINGULARITY-FREE INTERPRETATION OF THE THERMODYNAMICS OF SUPERCOOLED WATER , 1996 .

[17]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[18]  C. Angell,et al.  Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45°C , 1976 .

[19]  R. Sec.,et al.  XX. On the theory of surface forces.—II. Compressible fluids , 1892 .

[20]  Juan J de Pablo,et al.  Melting line of the Lennard-Jones system, infinite size, and full potential. , 2007, The Journal of chemical physics.

[21]  R. J. Speedy,et al.  Stability-limit conjecture. An interpretation of the properties of water , 1982 .

[22]  G. Peters,et al.  Methodological problems in pressure profile calculations for lipid bilayers. , 2005, The Journal of chemical physics.

[23]  V. Baidakov,et al.  Metastable States in Liquid–Gas Phase Transition. Simulation by the Method of Molecular Dynamics , 2003 .

[24]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[25]  P. Jedlovszky,et al.  Layer-by-layer and intrinsic analysis of molecular and thermodynamic properties across soft interfaces. , 2015, The Journal of chemical physics.

[26]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[27]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[28]  Andreas Poullikkas,et al.  Effects of two-phase liquid-gas flow on the performance of nuclear reactor cooling pumps , 2003 .

[29]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  A. R. Imre,et al.  The relation of interface properties and bulk phase stability: molecular dynamics simulations of carbon dioxide. , 2009, The journal of physical chemistry. B.

[31]  H Eugene Stanley,et al.  Interplay between time-temperature transformation and the liquid-liquid phase transition in water. , 2002, Physical review letters.

[32]  A. Baranyai,et al.  Estimation of the Thermodynamic Limit of Overheating for Bulk Water from Interfacial Properties , 2013 .

[33]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[34]  Stanley,et al.  Spinodal of liquid water. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  P. Skripov,et al.  The Attainable Superheat: From Simple to Polymeric Liquids , 2001 .

[36]  H. Stanley,et al.  Is there a second critical point in liquid water , 1994 .

[37]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[38]  Y. Guissani,et al.  How to build a better pair potential for water , 2001 .