COHERENT ACCEPTABILITY MEASURES IN MULTIPERIOD MODELS

The framework of coherent risk measures has been introduced by Artzner et al. (1999; Math. Finance 9, 203–228) in a single‐period setting. Here, we investigate a similar framework in a multiperiod context. We add an axiom of dynamic consistency to the standard coherence axioms, and obtain a representation theorem in terms of collections of multiperiod probability measures that satisfy a certain product property. This theorem is similar to results obtained by Epstein and Schneider (2003; J. Econ. Theor. 113, 1–31) and Wang (2003; J. Econ. Theor. 108, 286–321) in a different axiomatic framework. We then apply our representation result to the pricing of derivatives in incomplete markets, extending results by Carr, Geman, and Madan (2001; J. Financial Econ. 32, 131–167) to the multiperiod case. We present recursive formulas for the computation of price bounds and corresponding optimal hedges. When no shortselling constraints are present, we obtain a recursive formula for price bounds in terms of martingale measures.

[1]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[2]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[3]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[4]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[5]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[6]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[7]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[8]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[9]  D. G. Rees,et al.  Foundations of Statistics , 1989 .

[10]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[11]  Alan G. White,et al.  Pricing Interest-Rate-Derivative Securities , 1990 .

[12]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[13]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[14]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[15]  Larry G. Epstein,et al.  Intertemporal Asset Pricing Under Knightian Uncertainty , 1994 .

[16]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[17]  J. Cochrane,et al.  Beyond Arbitrage: 'Good Deal' Asset Price Bounds in Incomplete Markets , 1996 .

[18]  Marco Avellaneda,et al.  Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model , 1996 .

[19]  Vassili N. Kolokoltsov,et al.  Nonexpansive maps and option pricing theory , 1998, Kybernetika.

[20]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[21]  Aleš Černý,et al.  The Theory of Good-Deal Pricing in Financial Markets , 1998 .

[22]  Nonexpansive maps and option pricing , 1998 .

[23]  Johannes Schumacher,et al.  Performance of Delta-hedging strategies in interval models - A robustness study , 1999 .

[24]  Jaksa Cvitanic,et al.  On dynamic measures of risk , 1999, Finance Stochastics.

[25]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[26]  Fabio Trojani,et al.  A note on robustness in Merton's model of intertemporal consumption , 2002 .

[27]  Jonathan R. Partington,et al.  Bounded Power Signal Spaces for Robust Control and Modeling , 1999 .

[28]  Prospect Theory and Asset Prices , 1999 .

[29]  Ramon Casadesus-Masanell,et al.  Maxmin Expected Utility over Savage Acts with a Set of Priors , 2000, J. Econ. Theory.

[30]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[31]  Olivier Ledoit,et al.  Gain, Loss, and Asset Pricing , 2000, Journal of Political Economy.

[32]  Hélyette Geman,et al.  Pricing and hedging in incomplete markets , 2001 .

[33]  Raman Uppal,et al.  Model Misspecification and Under-Diversification , 2002 .

[34]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[35]  Uwe Küchler,et al.  Coherent risk measures and good-deal bounds , 2001, Finance Stochastics.

[36]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[37]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[38]  Philipp J. Schönbucher,et al.  Advances in Finance and Stochastics , 2002 .

[39]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[40]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[41]  Michael Kirch,et al.  Efficient hedging in incomplete markets under model uncertainty , 2002 .

[42]  P. Pathak Notes on Robust Portfolio Choice , 2002 .

[43]  Lars Peter Hansen,et al.  Robustness and Uncertainty Aversion , 2002 .

[44]  A. Sbuelz,et al.  Equilibrium Asset Pricing with Time-Varying Pessimism , 2002 .

[45]  S. Hilden Convex measures of risk and trading constraints , 2003 .

[46]  S. Weber Distribution-Invariant Dynamic Risk Measures , 2003 .

[47]  Costis Skiadas Robust control and recursive utility , 2003, Finance Stochastics.

[48]  Tan Wang,et al.  Conditional preferences and updating , 2003, J. Econ. Theory.

[49]  Frank Riedel,et al.  Dynamic Coherent Risk Measures , 2003 .

[50]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[51]  Pascal J. Maenhout Robust Portfolio Rules and Asset Pricing , 2004 .

[52]  Marco Frittelli,et al.  Dynamic convex risk measures , 2004 .

[53]  G. P. Szegö,et al.  Risk measures for the 21st century , 2004 .

[54]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[55]  M. Frittelli,et al.  RISK MEASURES AND CAPITAL REQUIREMENTS FOR PROCESSES , 2006 .

[56]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .