Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area

Abstract Land surface temperature (LST) is a key parameter in numerous environmental studies. Surface heterogeneity induces uncertainty in pixel-wise LST. Spatial scaling may account for the uncertainty, however, different approaches lead to differences in scaled values. Satellite-retrieved LST may be representative of the pixel-wise LST and useful for scaling analysis, but the limited accuracy of retrieved values adds uncertainty into the scaled values. Based on the Stefan–Boltzmann (S–B) law, this study proposed scaling approaches for LST over flat and relief areas to explore the combined uncertainties in scaling using satellite-retrieved data. To take advantage of simultaneous, multi-resolution observations at coincident nadirs by the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and the MODerate-resolution Imaging Spectroradiometer (MODIS), LST products from these two sensors were examined for part of the Loess Plateau in China. 90-m ASTER LST data were scaled up to 1 km using the proposed approaches, and variation in the LST was generally reduced after scaling. Amongst the sources of uncertainties, surface heterogeneity (emissivity) and different scaling approaches resulted in very minor differences, with a maximum difference of 0.2 K for the upscaled LST. Terrain features, taken as an areal weighting factor, had negligible effects on the upscaled value. Limited accuracy of the retrieved LST was the major uncertainty. The overall LST increased 0.6 K on average with correction for terrain-induced angular effect and 0.4 K for both angular and adjacency effects over the study area. Accounting for terrain correction in scaling is necessary for rugged areas. With terrain correction, the upscaled ASTER LST achieved an agreement of − 0.1 ± 1.87 K and a root mean square error (RMSE) of 1.87 K overall with the 1-km MODIS LST rectified by Wan et al.'s approach [Wan, Z., Zhang, Y., Zhang Q., Li, Z.-L. (2002b), Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83 , 163–180]. Refining the rectification approach resulted in a better agreement of − 0.2 ± 1.57 K and a RMSE of 1.58 K.

[1]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[2]  R. Schowengerdt,et al.  Early results on the characterization of the Terra MODIS spatial response , 2002 .

[3]  T. Schmugge,et al.  Recovering Surface Temperature and Emissivity from Thermal Infrared Multispectral Data , 1998 .

[4]  Z. Wan MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD) , 1999 .

[5]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[6]  J. Chen Spatial Scaling of a Remotely Sensed Surface Parameter by Contexture , 1999 .

[7]  J. Reynolds,et al.  On definition and quantification of heterogeneity , 1995 .

[8]  Y. Knyazikhin,et al.  Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions , 2003 .

[9]  J. Dozier,et al.  Rapid calculation of terrain parameters for radiation modeling from digital elevation data , 1990 .

[10]  Venkat Lakshmi,et al.  Normalization and comparison of surface temperatures across a range of scales , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  J. Norman,et al.  Algorithms for extracting information from remote thermal-IR observations of the Earth's surface , 1995 .

[13]  J. Norman,et al.  Terminology in thermal infrared remote sensing of natural surfaces , 1995 .

[14]  A. Karnieli,et al.  Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data , 1999 .

[15]  Zhao-Liang Li,et al.  Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data , 2002 .

[16]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  Kenta Ogawa,et al.  Estimation of broadband land surface emissivity from multi-spectral thermal infrared remote sensing , 2002 .

[18]  K. I. Kondratʹev Radiation in the atmosphere , 1969 .

[19]  K. Soudani,et al.  On the variability of the LAI of homogeneous covers with respect to the surface size and application , 2003 .

[20]  D. P. Turner,et al.  Scaling net primary production to a MODIS footprint in support of Earth observing system product validation , 2004 .

[21]  P. Sellers Remote sensing of the land surface for studies of global change , 1993 .

[22]  Robert Frouin,et al.  Upscale integration of normalized difference vegetation index: the problem of spatial heterogeneity , 1992, IEEE Trans. Geosci. Remote. Sens..

[23]  Alan B. Anderson,et al.  Spatial-variability-based algorithms for scaling-up spatial data and uncertainties , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[25]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[26]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[27]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[28]  J. Dymond,et al.  Correcting satellite imagery for the variance of reflectance and illumination with topography , 2003 .

[29]  Z. Wan,et al.  Quality assessment and validation of the MODIS global land surface temperature , 2004 .

[30]  D. Schimel,et al.  Terrestrial biogeochemical cycles: Global estimates with remote sensing , 1995 .

[31]  Alain Royer,et al.  Analysis of Temperature Emissivity Separation (TES) algorithm applicability and sensitivity , 2004 .

[32]  Mark D. Semon,et al.  POSTUSE REVIEW: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1982 .

[33]  T. Schmugge,et al.  Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors , 2004 .

[34]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[35]  E. Crist,et al.  Application of the Tasseled Cap concept to simulated thematic mapper data , 1984 .

[36]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[37]  L. Simmonds,et al.  Effects of sub-pixel heterogeneity on the retrieval of soil moisture from passive microwave radiometry , 2003 .

[38]  Simon J. Hook,et al.  Vicarious calibration of ASTER thermal infrared bands , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Jean-Paul Lhomme,et al.  Energy balance of heterogeneous terrain: averaging the controlling parameters , 1992 .

[40]  Eni G. Njoku,et al.  Approaches for Averaging Surface Parameters and Fluxes over Heterogeneous Terrain , 1995 .

[41]  William P. Kustas,et al.  Evaluating the effects of subpixel heterogeneity on pixel average fluxes. , 2000 .

[42]  J. B. Stewart,et al.  Scaling up in hydrology using remote sensing: Summary of a Workshop , 1998 .

[43]  Z. Wan,et al.  Preliminary estimate of calibration of the moderate resolution imaging spectroradiometer thermal infrared data using Lake Titicaca , 2002 .

[44]  Hideyuki Tonooka,et al.  ASTER/TIR onboard calibration status and user-based recalibration , 2004, SPIE Remote Sensing.

[45]  M. S. Moran,et al.  The scaling characteristics of remotely-sensed variables for sparsely-vegetated heterogeneous landscapes , 1997 .

[46]  Frank J. Wentz,et al.  Precise climate monitoring using complementary satellite data sets , 2000, Nature.

[47]  Nathaniel A. Brunsell,et al.  Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing , 2003 .

[48]  Kenta Ogawa,et al.  Estimation of land surface window (8–12 μm) emissivity from multi‐spectral thermal infrared remote sensing — A case study in a part of Sahara Desert , 2003 .

[49]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[50]  A. Lipton,et al.  Satellite-view biases in retrieved surface temperatures in mountain areas , 1997 .

[51]  H. Fischer,et al.  Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends , 2002 .

[52]  Martha C. Anderson,et al.  A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales , 2004 .

[53]  Klaus I. Itten,et al.  A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain , 1997, IEEE Trans. Geosci. Remote. Sens..

[54]  William C. Snyder,et al.  Requirements for satellite land surface temperature validation using a silt playa , 1997 .

[55]  Philip N. Slater,et al.  Remote sensing, optics and optical systems , 1980 .

[56]  Zhilin Zhu,et al.  Study of emissivity scaling and relativity of homogeneity of surface temperature , 2004 .

[57]  Kyung-Soo Han,et al.  An analysis of GOES and NOAA derived land surface temperatures estimated over a boreal forest , 2004 .