A nonparametric method for pricing and hedging American options

In this paper, we study the problem of estimating the price of an American option and its price sensitivities via Monte Carlo simulation. Compared to estimating the option price which satisfies a backward recursion, estimating the price sensitivities is more challenging. With the readily-computable pathwise derivatives in a simulation run, we derive a backward recursion for the price sensitivities. We then propose nonparametric estimators, the k-nearest neighbor estimators, to estimate conditional expectations involved in the backward recursion, leading to estimates of the option price and its sensitivities in the same simulation run. Numerical experiments indicate that the proposed method works well and is promising for practical problems.

[1]  R. Caflisch,et al.  Pricing and Hedging American-Style Options: A Simple Simulation-Based Approach , 2009 .

[2]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[3]  R. Durrett Probability: Theory and Examples , 1993 .

[4]  W. Härdle Applied Nonparametric Regression , 1992 .

[5]  Ron Kaniel,et al.  Efficient Computation of Hedging Parameters for Discretely Exercisable Options , 2008, Oper. Res..

[6]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[7]  L. Rogers Monte Carlo valuation of American options , 2002 .

[8]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[9]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[10]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[11]  L. Jeff Hong,et al.  Kernel Estimation of the Greeks for Options with Discontinuous Payoffs , 2011, Oper. Res..

[12]  Nan Chen,et al.  American Option Sensitivities Estimation via a Generalized IPA Approach , 2012 .

[13]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[14]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[15]  Dawn Hunter,et al.  A stochastic mesh method for pricing high-dimensional American options , 2004 .

[16]  P. Glasserman,et al.  A Sotchastic Mesh Method for Pricing High-Dimensional American Options , 2004 .

[17]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[18]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[19]  Y. Ho,et al.  Perturbation analysis and optimization of queueing networks , 1982, 1982 21st IEEE Conference on Decision and Control.