Global‐basis two‐level method for indefinite systems. Part 2: computational issues
暂无分享,去创建一个
Jacob Fish | J. Fish | Yong Qu | Yong Qu
[1] Jacob Fish,et al. Towards robust two-level methods for indefinite systems , 1999 .
[2] A. Bayliss,et al. On accuracy conditions for the numerical computation of waves , 1985 .
[3] Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear systems , 1988 .
[4] Jacob Fish,et al. Global‐basis two‐level method for indefinite systems. Part 1: convergence studies , 2000 .
[5] Gene H. Golub,et al. Matrix computations , 1983 .
[6] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[7] John G. Lewis,et al. Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..
[8] T. Belytschko,et al. A finite element with embedded localization zones , 1988 .
[9] Mark T. Jones,et al. An improved incomplete Cholesky factorization , 1995, TOMS.
[10] C. Rajakumar,et al. The Lanczos algorithm applied to unsymmetric generalized eigenvalue problem , 1991 .
[11] Peter M. Pinsky,et al. Finite element dispersion analysis for the three‐dimensional second‐order scalar wave equation , 1992 .
[12] Y. Saad,et al. Experimental study of ILU preconditioners for indefinite matrices , 1997 .
[13] R. Freund,et al. Software for simplified Lanczos and QMR algorithms , 1995 .
[14] Michele Benzi,et al. Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..