Anomaly Ranking as Supervised Bipartite Ranking
暂无分享,去创建一个
[1] Vanish Talwar,et al. Ranking anomalies in data centers , 2012, 2012 IEEE Network Operations and Management Symposium.
[2] Dan Roth,et al. Generalization Bounds for the Area Under the ROC Curve , 2005, J. Mach. Learn. Res..
[3] W. Polonik. Minimum volume sets and generalized quantile processes , 1997 .
[4] T. Salakoski,et al. Learning to Rank with Pairwise Regularized Least-Squares , 2007 .
[5] Yoram Singer,et al. An Efficient Boosting Algorithm for Combining Preferences by , 2013 .
[6] Jean-Philippe Vert,et al. Consistency and Convergence Rates of One-Class SVMs and Related Algorithms , 2006, J. Mach. Learn. Res..
[7] Robert D. Nowak,et al. Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..
[8] Clayton D. Scott,et al. Regression Level Set Estimation Via Cost-Sensitive Classification , 2007, IEEE Transactions on Signal Processing.
[9] Ralf Herbrich,et al. Large margin rank boundaries for ordinal regression , 2000 .
[10] Don R. Hush,et al. A Classification Framework for Anomaly Detection , 2005, J. Mach. Learn. Res..
[11] D. Mason,et al. Generalized quantile processes , 1992 .
[12] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[13] Stéphan Clémençon,et al. Adaptive partitioning schemes for bipartite ranking , 2011, Machine Learning.
[14] G. Lugosi,et al. Ranking and empirical minimization of U-statistics , 2006, math/0603123.
[15] Bernhard Schölkopf,et al. Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.
[16] Tom Fawcett,et al. An introduction to ROC analysis , 2006, Pattern Recognit. Lett..
[17] Stéphan Clémençon,et al. An empirical comparison of learning algorithms for nonparametric scoring: the TreeRank algorithm and other methods , 2012, Pattern Analysis and Applications.
[18] Michael I. Jordan,et al. On the Consistency of Ranking Algorithms , 2010, ICML.
[19] Cynthia Rudin,et al. Margin-Based Ranking Meets Boosting in the Middle , 2005, COLT.
[20] Stéphan Clémençon,et al. Tree-Based Ranking Methods , 2009, IEEE Transactions on Information Theory.
[21] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[22] Stéphan Clémençon,et al. Ranking forests , 2013, J. Mach. Learn. Res..
[23] Nicolas Vayatis,et al. R-implementation of the TreeRank algorithm , 2009 .
[24] Alain Rakotomamonjy,et al. Optimizing Area Under Roc Curve with SVMs , 2004, ROCAI.
[25] Jérémie Jakubowicz,et al. Scoring anomalies: a M-estimation formulation , 2013, AISTATS.
[26] Alexander J. Smola,et al. Advances in Large Margin Classifiers , 2000 .
[27] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.