A Broadband Negative Index Metamaterial at Optical Frequencies

A broadband metamaterial presenting negative indices across hundreds of nanometers in the visible and near‐infrared spectral regimes is demonstrated theoretically, using transformation optics to design the metamaterial constituents. The approach begins with an infinite plasmonic waveguide that supports a broadband but dark (i.e, not easily optically accessed) negative index mode. Conformal mapping of this waveguide to a finite split‐ring‐resonator‐type structure transforms this mode into a bright (i.e, efficiently excited) resonance composed of degenerate electric and magnetic dipoles. A periodic array of such resonators exhibits negative refractive indices at optical frequencies in multiple regions exceeding 200 nm in bandwidth. The metamaterial response is confirmed through simulations of plane‐wave refraction through a metamaterial prism. These results illustrate the power of transformation optics for new metamaterial designs and provide a foundation for future broadband metamaterial devices.

[1]  E. Economou Surface Plasmons in Thin Films , 1969 .

[2]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[3]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[4]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[5]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[6]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[7]  M. Kafesaki,et al.  Experimental observation of true left-handed transmission peaks in metamaterials. , 2004, Optics letters.

[8]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[9]  N. Engheta,et al.  A positive future for double-negative metamaterials , 2005, IEEE Transactions on Microwave Theory and Techniques.

[10]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[11]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[12]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[13]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[14]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[15]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[16]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[17]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[18]  Wenshan Cai,et al.  Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. , 2006, Optics letters.

[19]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[20]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[21]  V. Shalaev Optical negative-index metamaterials , 2007 .

[22]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[23]  Ewold Verhagen,et al.  Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries. , 2008, Optics express.

[24]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[25]  U. Chettiar,et al.  Yellow-light negative-index metamaterials. , 2009, Optics letters.

[26]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[27]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[28]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[29]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[30]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[31]  H. Atwater,et al.  A single-layer wide-angle negative-index metamaterial at visible frequencies. , 2010, Nature materials.

[32]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[33]  R. Marqu'es,et al.  Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials , 2011, 1106.2045.

[34]  D. Kwong,et al.  Zero phase delay in negative-refractive-index photonic crystal superlattices , 2011 .

[35]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[36]  A. Boltasseva,et al.  A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.

[37]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[38]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[39]  A copper negative index metamaterial in the visible/near-infrared , 2011, 1107.4489.

[40]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[41]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[42]  N. Engheta,et al.  Optical isolation with epsilon-near-zero metamaterials. , 2012, Optics express.