A Second-Order Cone Bounding Algorithm for Robust Minimum Variance Beamforming

We present a geometrical approach for designing robust minimum variance (RMV) beamformers against steering vector uncertainties. Conventional techniques enclose the uncertainties with a convex set; the antenna weights are then designed to minimize the maximum array output variance over this set. In contrast, we propose to cover the uncertainty by a second-order cone (SOC). The optimization problem, with optional robust interference rejection constraints, then reduces to the minimization of the array output variance over the intersection of the SOC and a hyperplane. This is cast into a standard second-order cone programming (SOCP) problem and solved efficiently. We study the computationally efficient case wherein the uncertainties are embedded in complex-plane trapezoids. The idea is then extended to arbitrary uncertainty geometries. Effectiveness of the proposed approach over other schemes and its fast convergence in signal power estimation are demonstrated with numerical examples.

[1]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[2]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[3]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[4]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[5]  K. Teo,et al.  A new approach to the optimization of robust antenna array processors , 1993 .

[6]  Nobuyoshi Kikuma,et al.  Tamed adaptive antenna array , 1986 .

[7]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[8]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[9]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[10]  LiWu Chang,et al.  Performance of DMI and eigenspace-based beamformers , 1992 .

[11]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[12]  A. Cantoni,et al.  A unified approach to the design of robust narrow-band antenna array processors , 1990 .

[13]  Ju-Hong Lee,et al.  Robust adaptive array beamforming under steering vector errors , 1997 .

[14]  Stephen P. Boyd,et al.  SOCP: Software for Second-Order Cone Programming User's Guide , 1997 .

[15]  Stephen Boyd,et al.  Robust Beamforming in GPS Arrays , 2002 .

[16]  Antonio Cantoni,et al.  Derivative constraints for broad-band element space antenna array processors , 1983 .

[17]  Tung-Sang Ng,et al.  A geometrical approach to robust minimum variance beamforming , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[18]  Zhi-Quan Luo,et al.  Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem , 2003, IEEE Trans. Signal Process..

[19]  S. Q. Wu,et al.  A new robust beamforming method with antennae calibration errors , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[20]  Fan Wang,et al.  Optimal array pattern synthesis using semidefinite programming , 2003, IEEE Trans. Signal Process..

[21]  Henry Cox,et al.  Robust adaptive beamforming , 2005, IEEE Trans. Acoust. Speech Signal Process..

[22]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[23]  Stephen P. Boyd,et al.  Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..

[24]  Hermann A. Maurer,et al.  New Results and New Trends in Computer Science , 1991, Lecture Notes in Computer Science.

[25]  Mati Wax,et al.  Performance analysis of the minimum variance beamformer in the presence of steering vector errors , 1996, IEEE Trans. Signal Process..

[26]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[27]  Antonio Cantoni,et al.  Techniques in Robust Broadband Beamforming , 1992 .

[28]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.