Highly Directive Hybrid Plasmonic Leaky-Wave Optical Antenna With Controlled Side-Lobe Level

Various configurations are proposed to engineer the pattern of optical leaky-wave antennas with the goal of achieving a desired side-lobe level (SLL). By the aid of the proposed algorithm, two types of hybrid plasmonic optical traveling wave antennas with controlled SLL are designed and numerically analyzed. The antennas are designed to operate at the standard telecommunication wavelength of 1550 nm, and have a wide bandwidth that completely cover the standard optical communication bands of E, S, and C. The first configuration in which the tapering is applied to the width of slots results in a broad bandwidth of 28 THz, a high directivity of 14.6 dBi, an efficiency of 73%, and a low SLL of -19.4 dB. The second configuration, in which wall tapering is applied, exhibits a bandwidth greater than 30 THz, a high directivity of 13.6 dBi, an efficiency of 79%, and an excellent SLL of -25 dB. Thanks to the high gain and low SLL, these devices can have applications in integrated optical interconnects, highly integrated optical beam-steering devices, such as active LIDARs and solar cells with high efficiency.

[1]  Pengyu Fan,et al.  Resonant germanium nanoantenna photodetectors. , 2010, Nano letters.

[2]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.

[3]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[4]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[5]  L. Yousefi Highly Directive Hybrid Plasmonic Leaky Wave Optical Nano-Antenna , 2014 .

[6]  Mikael Käll,et al.  A bimetallic nanoantenna for directional colour routing , 2011, Nature communications.

[7]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[8]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[9]  B. Friedman,et al.  A Surface Plasmon Microcavity Between the Toroidal and Flat Metallic Surfaces , 2012, Plasmonics.

[10]  Leila Yousefi,et al.  An inter- and intra-chip optical interconnect using a hybrid plasmonic leaky-wave nano-antenna , 2014, Photonics Europe.

[11]  Harald Giessen,et al.  Imaging and steering an optical wireless nanoantenna link , 2014, Nature Communications.

[12]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[13]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[14]  Andrea Alù,et al.  Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles , 2010 .

[15]  Ami Yaacobi,et al.  Vertical emitting aperture nanoantennas. , 2012, Optics letters.

[16]  R. Elliott Antenna Theory and Design , 2003 .

[17]  Javier Alda,et al.  Optical antennas for nano-photonic applications , 2005 .

[18]  A. Bonakdar,et al.  Impact of optical antennas on active optoelectronic devices. , 2014, Nanoscale.

[19]  L. Novotný,et al.  Antennas for light , 2011 .

[20]  Ivan V. Tomov,et al.  Imaging by silicon on insulator waveguides , 2009 .

[21]  Sailing He,et al.  A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. , 2009, Optics express.

[22]  Guo-Qiang Lo,et al.  Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler. , 2014, Optics express.

[23]  S. Sederberg,et al.  Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. , 2011, Optics express.

[24]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[25]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[26]  Jennifer Urner,et al.  Antenna Theory And Design , 2016 .

[27]  Charles K. Toth,et al.  R&D OF MOBILE LIDAR MAPPING AND FUTURE TRENDS , 2009 .

[28]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[29]  B. Rashidian,et al.  An Efficient Circuit Model for the Analysis and Design of Rectangular Plasmonic Resonators , 2012, Plasmonics.

[30]  Richard Soref,et al.  Sub-wavelength Plasmonic Modes in a Conductor-gap-dielectric System with a Nanoscale Gap References and Links , 2022 .

[31]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[32]  J. S. Aitchison,et al.  Super mode propagation in low index medium , 2007, 2007 Quantum Electronics and Laser Science Conference.

[33]  Leila Yousefi,et al.  Waveguide-fed optical hybrid plasmonic patch nano-antenna. , 2012, Optics express.

[34]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[35]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[36]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[37]  J. Marti,et al.  Analysis of Hybrid Dielectric Plasmonic Waveguides , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Luis Landesa,et al.  Optimization of an optical wireless nanolink using directive nanoantennas. , 2013, Optics express.

[39]  Filippo Capolino,et al.  Silicon-based optical leaky wave antenna with narrow beam radiation. , 2011, Optics express.

[40]  Vien Van,et al.  Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. , 2010, Optics express.