Ultraselective and ultrasensitive detection of trimethylamine using MoO3 nanoplates prepared by ultrasonic spray pyrolysis

[1]  Changwen Hu,et al.  Thermal oxidation synthesis hollow MoO3 microspheres and their applications in lithium storage and gas-sensing , 2013 .

[2]  Peng Song,et al.  Morphology-controllable synthesis, characterization and sensing properties of single-crystal molybdenum trioxide , 2013 .

[3]  Il-Doo Kim,et al.  Selective and sensitive detection of trimethylamine using ZnO-In2O3 composite nanofibers , 2013 .

[4]  S. Sarkar,et al.  Replica of a fishy enzyme: structure-function analogue of trimethylamine-N-oxide reductase. , 2013, Inorganic chemistry.

[5]  Eduard Llobet,et al.  Single‐Step Deposition of Au‐ and Pt‐Nanoparticle‐Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosol‐Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays , 2013 .

[6]  C. Liu,et al.  Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties , 2012 .

[7]  Ho Won Jang,et al.  Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors , 2012, Scientific Reports.

[8]  Chan Woong Na,et al.  Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures , 2012, Nanotechnology.

[9]  J. H. Lee,et al.  Highly sensitive and selective trimethylamine sensors using Ru-doped SnO2 hollow spheres , 2012 .

[10]  Yun Chan Kang,et al.  Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres , 2011 .

[11]  Lili Liu,et al.  Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. , 2011, Chemical communications.

[12]  K. Tsuchiya,et al.  Development of High Density MoO3 Pellets for Production of 99Mo Medical Isotope , 2011 .

[13]  Jing Sun,et al.  Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance , 2011 .

[14]  Guozhong Cao,et al.  Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries , 2011 .

[15]  Chan Woong Na,et al.  Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. , 2011, Chemical communications.

[16]  Shiming Liang,et al.  Trimethylamine sensing properties of CdO–Fe2O3 nano-materials prepared using co-precipitation method in the presence of PEG400 , 2010 .

[17]  Yun Chan Kang,et al.  Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers , 2010 .

[18]  H. Shui,et al.  Trimethylamine sensing properties of nano-SnO2 prepared using microwave heating method , 2010 .

[19]  Yinjuan Xie,et al.  Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application , 2010 .

[20]  Shiming Liang,et al.  Trimethylamine sensing properties of sensors based on MoO3 microrods , 2010 .

[21]  Seong‐Hyeon Hong,et al.  Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method , 2010 .

[22]  J. H. Lee,et al.  C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction , 2010 .

[23]  Yaqi Jiang,et al.  Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. , 2009, Angewandte Chemie.

[24]  H. Shui,et al.  Trimethylamine sensing properties of nano-LaFeO3 prepared using solid-state reaction in the presence of PEG400 , 2009 .

[25]  Ming-Yen Lu,et al.  Direct Conversion of Single‐Layer SnO Nanoplates to Multi‐Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties , 2009 .

[26]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[27]  M. S. Hassan,et al.  Low temperature fabrication of hexagon shaped h-MoO3 nanorods and its phase transformation , 2009 .

[28]  Tetsuya Kida,et al.  Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes , 2009 .

[29]  S. Akbar,et al.  Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres , 2009 .

[30]  J. Zhan,et al.  Fabrication and Gas‐Sensing Properties of Porous ZnO Nanoplates , 2008 .

[31]  Wei‐De Zhang,et al.  Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes , 2008 .

[32]  John Drennan,et al.  Highly sensitive and fast responding CO sensor using SnO2 nanosheets , 2008 .

[33]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .

[34]  Irina I. Ivanova,et al.  Surface chemistry of nanocrystalline SnO2: Effect of thermal treatment and additives , 2007 .

[35]  Seok-Jin Yoon,et al.  The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition , 2007 .

[36]  Abdul-Majeed Azad,et al.  Fine-tuning of ceramic-based chemical sensors via novel microstructural modification: Part II: Low level CO sensing by molybdenum oxide, MoO3 , 2006 .

[37]  R. P. Tandon,et al.  MoO3-based sensor for NO, NO2 and CH4 detection , 2006 .

[38]  L. Francioso,et al.  Synthesis, electrical characterization, and gas sensing properties of molybdenum oxide nanorods , 2006 .

[39]  Y. Kang,et al.  Preparation of nano-sized BaTiO3 particle by citric acid-assisted spray pyrolysis , 2005 .

[40]  G. Sberveglieri,et al.  Gas sensing properties of MoO3 nanorods to CO and CH3OH , 2005 .

[41]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[42]  Yoshitake Nishi,et al.  Trimethylamine biosensor with flavin-containing monooxygenase type 3 (FMO3) for fish-freshness analysis , 2004 .

[43]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[44]  Soumen Basu,et al.  ZnO thin film sensors for detecting dimethyl- and trimethyl-amine vapors , 2004 .

[45]  K. Vijayamohanan,et al.  Morphological and sensing properties of spray-pyrolysed Th:SnO2 thin films , 2004 .

[46]  L. Gao,et al.  SEM, XPS, and FTIR studies of MoO3 dispersion on mesoporous silicate MCM-41 by calcination , 2003 .

[47]  T. Gnanasekaran,et al.  Gas sensing properties of PLD made MoO3 films , 2003 .

[48]  P. Gouma,et al.  Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection , 2003 .

[49]  A. Cornet,et al.  Mesoporous catalytic filters for semiconductor gas sensors , 2003 .

[50]  K. S. Rao,et al.  Characterization of activated reactive evaporated MoO3 thin films for gas sensor applications , 2003 .

[51]  Martin Moskovits,et al.  Detection of CO and O2 Using Tin Oxide Nanowire Sensors , 2003 .

[52]  J. Hrbek,et al.  Molecular level study of the formation and the spread of MoO3 on Au(111) by scanning tunneling microscopy and X-ray photoelectron spectroscopy. , 2003, Journal of the American Chemical Society.

[53]  Xiaolin Li,et al.  Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts , 2002 .

[54]  F. Solzbacher,et al.  A new preparation method for sputtered MoO3 multilayers for the application in gas sensors , 2001 .

[55]  G. Martinelli,et al.  Nanosized Ti-doped MoO3 thin films for gas-sensing application , 2001 .

[56]  Dingsan Gao,et al.  WO3 thin film sensor prepared by sol-gel technique and its low-temperature sensing properties to trimethylamine , 2001 .

[57]  W. Qu,et al.  Carbon monoxide response of molybdenum oxide thin films deposited by different techniques , 2000 .

[58]  Norio Miura,et al.  Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides , 2000 .

[59]  Shenhao Chen,et al.  Enhancement of trimethylamine sensitivity of MOCVD-SnO2 thin film gas sensor by thorium , 2000 .

[60]  K. Kikuta,et al.  Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor , 2000 .

[61]  Y. Berthier,et al.  AES, XPS, and TDS study of the adsorption and desorption of NH3 on ultra-thin chromium oxide films formed on chromium single crystal surfaces , 1999 .

[62]  L. Chen,et al.  Gas‐Sensing Properties of Th / SnO2 Thin‐Film Gas Sensor to Trimethylamine , 1999 .

[63]  Tae-Ha Kwon,et al.  Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas , 1998 .

[64]  Matteo Ferroni,et al.  Characterization of a molybdenum oxide sputtered thin film as a gas sensor , 1997 .

[65]  E. Obermeier,et al.  Sputtered molybdenum oxide thin films for NH3 detection , 1996 .

[66]  Y. Shimizu,et al.  Semiconductor dimethylamine gas sensors with high sensitivity and selectivity , 1995 .

[67]  Hidehito Nanto,et al.  Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods , 1993 .

[68]  Y. Shimizu,et al.  Trimethylamine-sensing mechanism of TiO2-based sensors 3. Temperature programmed desorption behaviour of trimethylamine and variation of sensitivity with sensor thickness , 1993 .

[69]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[70]  Y. Shimizu,et al.  Detection of Freshness of Fish by a Semiconductive RU / TiO2 Sensor , 1988 .

[71]  B. Wanklyn The prediction of starting compositions for the flux growth of complex oxide crystals , 1977 .

[72]  W. L. Jolly,et al.  X-RAY PHOTOELECTRON SPECTROSCOPY , 1970 .

[73]  Yun Chan Kang,et al.  Highly selective and sensitive detection of trimethylamine using WO3 hollow spheres prepared by ultrasonic spray pyrolysis , 2013 .

[74]  Xavier Roca,et al.  Determining indoor air quality and identifying the origin of odour episodes in indoor environments. , 2009, Journal of environmental sciences.

[75]  K. Hirota,et al.  Characterization and sintering of MoO3 prepared by thermal decomposition of hexaammonium heptamolybdate tetrahydrate , 1997 .