Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes.

[1]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[2]  Sebastian A. Wagner,et al.  Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria , 2016, Proceedings of the National Academy of Sciences.

[3]  Keiji Tanaka,et al.  The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation , 2016, EMBO reports.

[4]  J. Morrow,et al.  Targeting ubiquitination for cancer therapies. , 2015, Future medicinal chemistry.

[5]  S. Gygi,et al.  Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains. , 2015, Journal of proteome research.

[6]  J. Harper,et al.  The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. , 2015, Molecular cell.

[7]  Sean J Humphrey,et al.  High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics , 2015, Nature Biotechnology.

[8]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[9]  P. Domingues,et al.  The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors , 2015, Scientific Reports.

[10]  Meaghan Morris,et al.  Tau post-translational modifications in wildtype and human amyloid precursor protein transgenic mice , 2015, Nature Neuroscience.

[11]  S. Gygi,et al.  Comprehensive Temporal Protein Dynamics during the Diauxic Shift in Saccharomyces cerevisiae , 2015, Molecular & Cellular Proteomics.

[12]  Donald S Kirkpatrick,et al.  Immunoaffinity enrichment coupled to quantitative mass spectrometry reveals ubiquitin-mediated signaling events. , 2015, Journal of molecular biology.

[13]  J Wade Harper,et al.  Quantifying ubiquitin signaling. , 2015, Molecular cell.

[14]  J. Harper,et al.  Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response , 2015, Proceedings of the National Academy of Sciences.

[15]  Yong Tae Kwon,et al.  Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies , 2015, Experimental & Molecular Medicine.

[16]  Christine Yu,et al.  USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria , 2015, Nature Cell Biology.

[17]  R. Youle,et al.  The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease , 2015, Neuron.

[18]  S. Gygi,et al.  Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer , 2014, Analytical chemistry.

[19]  S. Gygi,et al.  Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. , 2014, Molecular cell.

[20]  Ivan Dikic,et al.  Ubiquitination in disease pathogenesis and treatment , 2014, Nature Medicine.

[21]  N. Donato,et al.  Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway , 2014, Oncotarget.

[22]  Edward L. Huttlin,et al.  MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes , 2014, Analytical chemistry.

[23]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[24]  R. Mallampalli,et al.  Emerging therapies targeting the ubiquitin proteasome system in cancer. , 2014, The Journal of clinical investigation.

[25]  M. Mann,et al.  In-Vivo Quantitative Proteomics Reveals a Key Contribution of Post-Transcriptional Mechanisms to the Circadian Regulation of Liver Metabolism , 2014, PLoS genetics.

[26]  S. Carr,et al.  Large-scale identification of ubiquitination sites by mass spectrometry , 2013, Nature Protocols.

[27]  Steven P. Gygi,et al.  Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization , 2013, Nature.

[28]  D R Mani,et al.  Refined Preparation and Use of Anti-diglycine Remnant (K-ε-GG) Antibody Enables Routine Quantification of 10,000s of Ubiquitination Sites in Single Proteomics Experiments* , 2012, Molecular & Cellular Proteomics.

[29]  Yanji Xu,et al.  Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. , 2012, Journal of proteome research.

[30]  Edward L. Huttlin,et al.  Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. , 2012, Analytical chemistry.

[31]  M. Bantscheff,et al.  High-resolution enabled TMT 8-plexing. , 2012, Analytical chemistry.

[32]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[33]  R. Youle,et al.  Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. , 2012, Developmental cell.

[34]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[35]  N. Mizushima,et al.  Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane*♦ , 2011, The Journal of Biological Chemistry.

[36]  John Rush,et al.  Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease* , 2011, The Journal of Biological Chemistry.

[37]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[38]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[39]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[40]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[41]  H. Clevers,et al.  Proteome changes induced by knock-down of the deubiquitylating enzyme HAUSP/USP7. , 2007, Journal of proteome research.

[42]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[43]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[44]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[45]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[46]  S. Gygi,et al.  ms3 eliminates ratio distortion in isobaric multiplexed quantitative , 2011 .