Systems biology approaches to bioremediation.

Bioremediation involves the exposure of a whole mixture of chemical structures to an intricate multispecies metabolic network present in a polluted scenario. The complexity involved in such events is growingly amenable to the conceptual frame and the tools of systems biology. The availability of genes, genomes, and metagenomes of biodegradative micro-organisms make it possible to model and even predict the fate of chemicals through the global metabolic network that results from connecting all known biochemical transactions. Microbial communities thus embody a landscape of pan-enzymes that is shaped by the freely diffusible metabolic pool (epimetabolome). Recent computational resources increasingly help the design of superior biocatalysts for biodegradation and biotransformations of desired chemicals, an objective that capitalizes on the new field of synthetic biology.

[1]  Lynda B. M. Ellis,et al.  The University of Minnesota pathway prediction system: predicting metabolic logic , 2008, Nucleic Acids Res..

[2]  Luke E. Ulrich,et al.  Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility , 2006, Proceedings of the National Academy of Sciences.

[3]  F. Rey,et al.  Redirection of Metabolism for Biological Hydrogen Production , 2007, Applied and Environmental Microbiology.

[4]  Christopher M Thomas,et al.  Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. , 2002, Environmental microbiology.

[5]  N. Kalogerakis,et al.  Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites , 2005, Biodegradation.

[6]  Derek R. Lovley,et al.  Cleaning up with genomics: applying molecular biology to bioremediation , 2003, Nature Reviews Microbiology.

[7]  J. Ramos,et al.  Bioremediation of 2,4,6-trinitrotoluene under field conditions. , 2007, Environmental science & technology.

[8]  Lynda B. M. Ellis,et al.  Microbial Pathway Prediction: A Functional Group Approach , 2003, J. Chem. Inf. Comput. Sci..

[9]  Frank J Bruggeman,et al.  Ecological control analysis: being(s) in control of mass flux and metabolite concentrations in anaerobic degradation processes. , 2007, Environmental microbiology.

[10]  P. Long,et al.  Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. , 2008, Environmental science & technology.

[11]  F. Arnold,et al.  Engineering microbial consortia: a new frontier in synthetic biology. , 2008, Trends in biotechnology.

[12]  S. Agathos,et al.  Is bioaugmentation a feasible strategy for pollutant removal and site remediation? , 2005, Current opinion in microbiology.

[13]  E. Lagendijk,et al.  Rhizoremediation: a beneficial plant-microbe interaction. , 2004, Molecular plant-microbe interactions : MPMI.

[14]  Mat E. Barnet,et al.  A synthetic Escherichia coli predator–prey ecosystem , 2008, Molecular systems biology.

[15]  D. Albrecht,et al.  Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. , 2006, Environmental microbiology.

[16]  K. Timmis,et al.  Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis , 2006, Nature Biotechnology.

[17]  Jizhong Zhou,et al.  Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site , 2007, BMC Genomics.

[18]  D. Pieper,et al.  Metabolic Reconstruction Ofaromatic Compounds Degradation from the Genome of the Amazing Pollutant-degrading Bacterium Cupriavidus Necator Jmp134 , 2007 .

[19]  M. Kivisaar,et al.  A DNA Polymerase V Homologue Encoded by TOL Plasmid pWW0 Confers Evolutionary Fitness on Pseudomonas putida under Conditions of Environmental Stress , 2005, Journal of bacteriology.

[20]  G. Beattie,et al.  Bacterial degradation of airborne phenol in the phyllosphere. , 2007, Environmental microbiology.

[21]  D. Pieper,et al.  Formation of Protoanemonin from 2-Chloro-cis,cis-Muconate by the Combined Action of Muconate Cycloisomerase and Muconolactone Isomerase , 2002, Journal of bacteriology.

[22]  J. Keasling,et al.  Mineralization of Paraoxon and Its Use as a Sole C and P Source by a Rationally Designed Catabolic Pathway in Pseudomonas putida , 2006, Applied and Environmental Microbiology.

[23]  Juan L. Ramos,et al.  Simultaneous Catabolite Repression between Glucose and Toluene Metabolism in Pseudomonas putida Is Channeled through Different Signaling Pathways , 2007, Journal of bacteriology.

[24]  M. Seeger,et al.  Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400 , 2007, Archives of Microbiology.

[25]  René L. Warren,et al.  The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse , 2006, Proceedings of the National Academy of Sciences.

[26]  Jizhong Zhou,et al.  Detection of Genes Involved in Biodegradation and Biotransformation in Microbial Communities by Using 50-Mer Oligonucleotide Microarrays , 2004, Applied and Environmental Microbiology.

[27]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[28]  V. de Lorenzo,et al.  Transcriptional Tradeoff between Metabolic and Stress-response Programs in Pseudomonas putida KT2440 Cells Exposed to Toluene* , 2006, Journal of Biological Chemistry.

[29]  Baohua Gu,et al.  GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes , 2007, The ISME Journal.

[30]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[31]  Eduardo Díaz,et al.  Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. , 2006, Environmental microbiology.

[32]  J. Keasling,et al.  A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion , 2003, Applied Microbiology and Biotechnology.

[33]  G. Stephanopoulos,et al.  Uncovering the gene knockout landscape for improved lycopene production in E. coli , 2008, Applied Microbiology and Biotechnology.

[34]  A. Franks,et al.  Bacterial endophytes: recent developments and applications. , 2008, FEMS microbiology letters.

[35]  M. Seeger,et al.  Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress. , 2007, FEMS microbiology letters.

[36]  Y. Ohtsubo,et al.  Identification and Characterization of Genes Encoding a Putative ABC-Type Transporter Essential for Utilization of γ-Hexachlorocyclohexane in Sphingobium japonicum UT26 , 2007, Journal of bacteriology.

[37]  Alfonso Valencia,et al.  MetaRouter: bioinformatics for bioremediation , 2004, Nucleic Acids Res..

[38]  V. de Lorenzo,et al.  Autotransporters as Scaffolds for Novel Bacterial Adhesins: Surface Properties of Escherichia coli Cells Displaying Jun/Fos Dimerization Domains , 2003, Journal of bacteriology.

[39]  Alfonso Jaramillo,et al.  DESHARKY: automatic design of metabolic pathways for optimal cell growth , 2008, Bioinform..

[40]  W. Verstraete,et al.  Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis. , 2007, Chemosphere.

[41]  Stefan Kramer,et al.  Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction , 2008, Bioinform..

[42]  D. Pieper,et al.  Engineering bacteria for bioremediation. , 2000, Current opinion in biotechnology.

[43]  R. Rabus,et al.  Anaerobic Degradation of p-Ethylphenol by “Aromatoleum aromaticum” Strain EbN1: Pathway, Regulation, and Involved Proteins , 2008, Journal of bacteriology.

[44]  Benjamin Stark,et al.  Use of Genetically Engineered Microorganisms (GEMs) for the Bioremediation of Contaminants , 2006, Critical reviews in biotechnology.

[45]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[46]  Victor de Lorenzo,et al.  Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.

[47]  Paul B. Rainey,et al.  Evolution of species interactions in a biofilm community , 2007, Nature.

[48]  K. Timmis,et al.  Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. , 2004, Environmental microbiology.

[49]  V. de Lorenzo,et al.  Structural tolerance of bacterial autotransporters for folded passenger protein domains , 2004, Molecular microbiology.

[50]  Eduardo Díaz,et al.  Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[51]  Lynda B. M. Ellis,et al.  The University of Minnesota Biocatalysis/Biodegradation Database: the first decade , 2005, Nucleic Acids Res..

[52]  Dietmar H. Pieper,et al.  Bacterial Metabolism of Polychlorinated Biphenyls , 2008, Journal of Molecular Microbiology and Biotechnology.

[53]  Peter F. Hallin,et al.  Global features of the Alcanivorax borkumensis SK2 genome. , 2008, Environmental microbiology.

[54]  Alfonso Valencia,et al.  The organization of the microbial biodegradation network from a systems‐biology perspective , 2003, EMBO reports.

[55]  Hauke Harms,et al.  Microbial interactions with organic contaminants in soil: definitions, processes and measurement. , 2007, Environmental pollution.

[56]  D. Lelie,et al.  Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants , 2004, Nature Biotechnology.

[57]  Gilles Klopman,et al.  META. 1. A Program for the Evaluation of Metabolic Transformation of Chemicals , 1994, J. Chem. Inf. Comput. Sci..

[58]  R. Leplae,et al.  A first global analysis of plasmid encoded proteins in the ACLAME database. , 2006, FEMS microbiology reviews.

[59]  Alfonso Valencia,et al.  The environmental fate of organic pollutants through the global microbial metabolism , 2007, Molecular Systems Biology.

[60]  O. White,et al.  Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[61]  H. Hecht,et al.  Assessment of Toluene/Biphenyl Dioxygenase Gene Diversity in Benzene-Polluted Soils: Links between Benzene Biodegradation and Genes Similar to Those Encoding Isopropylbenzene Dioxygenases , 2006, Applied and Environmental Microbiology.

[62]  B. Aken,et al.  Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. , 2008, Trends in biotechnology.

[63]  Ana Segura,et al.  Mechanisms of solvent tolerance in gram-negative bacteria. , 2002, Annual review of microbiology.

[64]  Paramvir S. Dehal,et al.  Cell-Wide Responses to Low-Oxygen Exposure in Desulfovibrio vulgaris Hildenborough , 2007, Journal of bacteriology.

[65]  H. Hecht,et al.  Difference in kinetic behaviour of catechol 2,3-dioxygenase variants from a polluted environment. , 2004, Microbiology.

[66]  Grigoriy E. Pinchuk,et al.  Towards environmental systems biology of Shewanella , 2008, Nature Reviews Microbiology.

[67]  Keith E. J. Tyo,et al.  Expanding the metabolic engineering toolbox: more options to engineer cells. , 2007, Trends in biotechnology.

[68]  Michael Y. Galperin Some bacteria degrade explosives, others prefer boiling methanol , 2007, Environmental microbiology.

[69]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[70]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[71]  Radhakrishnan Mahadevan,et al.  Geobacter sulfurreducens strain engineered for increased rates of respiration. , 2008, Metabolic engineering.

[72]  I. Thompson,et al.  Perspectives and vision for strain selection in bioaugmentation. , 2005, Trends in biotechnology.

[73]  A. Pozhitkov,et al.  Comment on "Discrimination of shifts in a soil microbial community associated with TNT-contamination using a functional ANOVA of 16S rRNA hybridized to oligonucleotide microarrays". , 2006, Environmental science & technology.

[74]  K. Nelson,et al.  Global features of the Pseudomonas putida KT2440 genome sequence. , 2002, Environmental microbiology.

[75]  J. Ramos,et al.  Towards a Genome-Wide Mutant Library of Pseudomonas putida Strain KT2440 , 2007 .

[76]  V. Tetz The pangenome concept: a unifying view of genetic information. , 2005, Medical science monitor : international medical journal of experimental and clinical research.

[77]  S. Molin,et al.  Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. , 2000, Environmental microbiology.

[78]  M. Höfle,et al.  Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater , 2003, Microbial Ecology.

[79]  J. Doré,et al.  Ecological study of a bioaugmentation failure. , 2000, Environmental microbiology.