Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS

[1]  K. Matsumoto,et al.  RSR1, a ras-like gene homologous to Krev-1 (smg21A/rap1A): role in the development of cell polarity and interactions with the Ras pathway in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[2]  S. Powers,et al.  Functional cloning of BUD5, a CDC25-related gene from S. cerevisiae that can suppress a dominant-negative RAS2 mutant , 1991, Cell.

[3]  I. Herskowitz,et al.  Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway , 1991, Cell.

[4]  D. Drubin Development of cell polarity in budding yeast , 1991, Cell.

[5]  I. Herskowitz,et al.  Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1 , 1991, Cell.

[6]  L. Bisson Influence of nitrogen on yeast and fermentation of grapes , 1991 .

[7]  D. Soll Current Status of the Molecular Basis of Candida Pathogenicity , 1991 .

[8]  A. Rayner,et al.  The challenge of individualistic mycelium , 1991 .

[9]  I. Herskowitz,et al.  The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif , 1990, Cell.

[10]  J. Broach,et al.  The function of ras genes in Saccharomyces cerevisiae. , 1990, Advances in cancer research.

[11]  T. Speed,et al.  Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. , 1990, Developmental Biology.

[12]  Ira Herskowitz,et al.  A regulatory hierarchy for cell specialization in yeast , 1989, Nature.

[13]  J. Pringle,et al.  Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Hyman,et al.  Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position , 1989, The Journal of cell biology.

[15]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[16]  M. Wigler,et al.  Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae , 1989, Molecular and cellular biology.

[17]  C. Ough,et al.  Effect of Vineyard Locations, Varieties, and Rootstocks on the Juice Amino Acid Composition of Several Cultivars , 1989, American Journal of Enology and Viticulture.

[18]  B. Haarer,et al.  Fluorescence microscopy methods for yeast. , 1989, Methods in cell biology.

[19]  M. Brandriss,et al.  A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box , 1988, Molecular and cellular biology.

[20]  C. Goutte,et al.  a1 Protein alters the dna binding specificity of α2 repressor , 1988, Cell.

[21]  M. Shepherd Morphogenetic transformation of fungi. , 1988, Current topics in medical mycology.

[22]  M. Shepherd,et al.  Proline-induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism. , 1987, Journal of general microbiology.

[23]  A. Hyman,et al.  Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans , 1987, The Journal of cell biology.

[24]  M. Wigler,et al.  Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[25]  F. Sosulski,et al.  Influence of Oxygen on Proline Utilization During the Wine Fermentation , 1987, American Journal of Enology and Viticulture.

[26]  B. Maro,et al.  Experimental approaches to mammalian embryonic development: Time and space in the mouse early embryo: a cell biological approach to cell diversification , 1987 .

[27]  L. C. Robinson,et al.  RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Wigler,et al.  In yeast, RAS proteins are controlling elements of adenylate cyclase , 1985, Cell.

[29]  M. Grenson,et al.  Nitrogen catabolite repression in yeasts and filamentous fungi. , 1985, Advances in microbial physiology.

[30]  E. Scolnick,et al.  Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability , 1984, Nature.

[31]  M. Wigler,et al.  Genetic analysis of yeast RAS1 and RAS2 genes , 1984, Cell.

[32]  W. L. Chaffin Site Selection for Bud and Germ Tube Emergence in Candida albicans , 1984 .

[33]  F. Macdonald,et al.  Virulence for mice of a proteinase-secreting strain of Candida albicans and a proteinase-deficient mutant. , 1983, Journal of general microbiology.

[34]  K. Murata,et al.  Transformation of intact yeast cells treated with alkali cations , 1983 .

[35]  L. Beuchat,et al.  Effects of Antioxidants on Growth, Sporulation and Pseudomycelium Production by Saccharomyces cerevisiae , 1982 .

[36]  K. Nasmyth Molecular genetics of yeast mating type. , 1982, Annual review of genetics.

[37]  T. Cooper Nitrogen Metabolism in Saccharomyces cerevisiae , 1982 .

[38]  K. Nickerson,et al.  Nutritional control of dimorphism inCeratocystis ulmi , 1981 .

[39]  M. Brandriss,et al.  Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae , 1980, Journal of bacteriology.

[40]  M. Brandriss,et al.  Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline , 1979, Journal of bacteriology.

[41]  G. Fink,et al.  Methods in yeast genetics , 1979 .

[42]  I. Herskowitz,et al.  Interconversion of Yeast Mating Types III. Action of the Homothallism (HO) Gene in Cells Homozygous for the Mating Type Locus. , 1977, Genetics.

[43]  D. Howard,et al.  Germination of Candida albicans induced by proline , 1976, Infection and immunity.

[44]  R. Stjernholm,et al.  Factors affecting filamentation in Candida albicans: relationship of the uptake and distribution of proline to morphogenesis , 1975, Infection and immunity.

[45]  J. Rytka Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae , 1975, Journal of bacteriology.

[46]  L. Hartwell Saccharomyces cerevisiae cell cycle. , 1974, Bacteriological reviews.

[47]  C. Ough,et al.  Further Studies on Proline Concentration in Grapes and Wines , 1974 .

[48]  M. Grenson,et al.  Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. , 1966, Journal of bacteriology.

[49]  Dilbag Singh,et al.  Nitrogenous compounds in the xylem sap of American elms with Dutch elm disease , 1969 .

[50]  J. S. Hough,et al.  Elongation of Yeast Cells in Continuous Culture , 1965, Nature.

[51]  D. Freifelder,et al.  BUD POSITION IN SACCHAROMYCES CEREVISIAE , 1960, Journal of bacteriology.