FRACTIONAL PEARSON DIFFUSIONS.

Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.

[1]  N. Leonenko,et al.  Series Expansions for the First Passage Distribution of Wong–Pearson Jump-Diffusions , 2009 .

[2]  Tamás Erdélyi,et al.  Generalized Jacobi Weights, Christoffel Functions, and Jacobi-polynomials (vol 25, Pg 602, 1994) , 1994 .

[3]  W. Rudin Principles of mathematical analysis , 1964 .

[4]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[5]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[6]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[7]  M. Magdziarz Black-Scholes Formula in Subdiffusive Regime , 2009 .

[8]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[9]  Asad Munir,et al.  Dependency without copulas or ellipticity , 2009 .

[10]  Enrico Scalas Five Years of Continuous-time Random Walks in Econophysics , 2005 .

[11]  F. Avram,et al.  Parameter estimation for Fisher–Snedecor diffusion , 2010 .

[12]  Mark M. Meerschaert,et al.  Fractional Cauchy problems on bounded domains , 2008, 0802.0673.

[13]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[14]  N. Bingham Limit theorems for occupation times of Markov processes , 1971 .

[15]  Chae Young Lim,et al.  Parameter estimation for fractional transport: A particle‐tracking approach , 2009 .

[16]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[17]  Alexander M. Krägeloh Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups , 2003 .

[18]  A. Stanislavsky Black–Scholes model under subordination , 2003, 1111.3263.

[19]  Tamás Erdélyi,et al.  Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .

[20]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[21]  M. Sørensen,et al.  The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes , 2007 .

[22]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[23]  Mark M. Meerschaert,et al.  STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .

[24]  Mark M. Meerschaert,et al.  Brownian subordinators and fractional Cauchy problems , 2007, 0705.0168.

[25]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[26]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[27]  M. Sørensen,et al.  Diffusion-type models with given marginal distribution and autocorrelation function , 2005 .

[28]  A. Kochubei,et al.  Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type , 2004 .

[29]  Statistical inference for reciprocal gamma diffusion process , 2010 .

[30]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[31]  Karina Weron,et al.  Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  A. N. Shiryayev,et al.  On Analytical Methods In Probability Theory , 1992 .

[33]  L. Bondesson,et al.  Infinite divisibility of random variables and their integer parts , 1996 .

[34]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .

[35]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[36]  Francesco Mainardi,et al.  Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk , 2007, 0709.3990.

[37]  Boris Baeumer,et al.  Particle tracking for time-fractional diffusion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[40]  P. Mazur On the theory of brownian motion , 1959 .

[41]  N. Leonenko,et al.  Statistical Inference for Student Diffusion Process , 2010 .

[42]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[43]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[44]  Francesco Mainardi,et al.  On Mittag-Leffler-type functions in fractional evolution processes , 2000 .

[45]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[46]  K. Pearson,et al.  Tables for statisticians and biometricians , 1914 .