FRACTIONAL PEARSON DIFFUSIONS.
暂无分享,去创建一个
Mark M Meerschaert | M. Meerschaert | A. Sikorskii | Alla Sikorskii | Nikolai N. Leonenko | Nikolai N Leonenko
[1] N. Leonenko,et al. Series Expansions for the First Passage Distribution of Wong–Pearson Jump-Diffusions , 2009 .
[2] Tamás Erdélyi,et al. Generalized Jacobi Weights, Christoffel Functions, and Jacobi-polynomials (vol 25, Pg 602, 1994) , 1994 .
[3] W. Rudin. Principles of mathematical analysis , 1964 .
[4] Rina Schumer,et al. Fractal mobile/immobile solute transport , 2003 .
[5] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[6] X. Mao,et al. Stochastic Differential Equations and Applications , 1998 .
[7] M. Magdziarz. Black-Scholes Formula in Subdiffusive Regime , 2009 .
[8] M. Caputo. Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .
[9] Asad Munir,et al. Dependency without copulas or ellipticity , 2009 .
[10] Enrico Scalas. Five Years of Continuous-time Random Walks in Econophysics , 2005 .
[11] F. Avram,et al. Parameter estimation for Fisher–Snedecor diffusion , 2010 .
[12] Mark M. Meerschaert,et al. Fractional Cauchy problems on bounded domains , 2008, 0802.0673.
[13] Mark M. Meerschaert,et al. Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.
[14] N. Bingham. Limit theorems for occupation times of Markov processes , 1971 .
[15] Chae Young Lim,et al. Parameter estimation for fractional transport: A particle‐tracking approach , 2009 .
[16] I M Sokolov,et al. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.
[17] Alexander M. Krägeloh. Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups , 2003 .
[18] A. Stanislavsky. Black–Scholes model under subordination , 2003, 1111.3263.
[19] Tamás Erdélyi,et al. Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .
[20] S. Ross,et al. A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .
[21] M. Sørensen,et al. The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes , 2007 .
[22] S. Karlin,et al. A second course in stochastic processes , 1981 .
[23] Mark M. Meerschaert,et al. STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .
[24] Mark M. Meerschaert,et al. Brownian subordinators and fractional Cauchy problems , 2007, 0705.0168.
[25] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[26] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[27] M. Sørensen,et al. Diffusion-type models with given marginal distribution and autocorrelation function , 2005 .
[28] A. Kochubei,et al. Analytic Methods In The Theory Of Differential And Pseudo-Differential Equations Of Parabolic Type , 2004 .
[29] Statistical inference for reciprocal gamma diffusion process , 2010 .
[30] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[31] Karina Weron,et al. Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] A. N. Shiryayev,et al. On Analytical Methods In Probability Theory , 1992 .
[33] L. Bondesson,et al. Infinite divisibility of random variables and their integer parts , 1996 .
[34] A. Einstein. Zur Theorie der Brownschen Bewegung , 1906 .
[35] A. Friedman. Stochastic Differential Equations and Applications , 1975 .
[36] Francesco Mainardi,et al. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk , 2007, 0709.3990.
[37] Boris Baeumer,et al. Particle tracking for time-fractional diffusion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[38] L. Rogers,et al. Diffusions, Markov processes, and martingales , 1979 .
[40] P. Mazur. On the theory of brownian motion , 1959 .
[41] N. Leonenko,et al. Statistical Inference for Student Diffusion Process , 2010 .
[42] M. Meerschaert,et al. Stochastic Models for Fractional Calculus , 2011 .
[43] A. Kolmogoroff. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .
[44] Francesco Mainardi,et al. On Mittag-Leffler-type functions in fractional evolution processes , 2000 .
[45] G. Uhlenbeck,et al. On the Theory of the Brownian Motion , 1930 .
[46] K. Pearson,et al. Tables for statisticians and biometricians , 1914 .