Seismic data reconstruction using a sparsity-promoting apex shifted hyperbolic Radon-curvelet transform

Apex shift hyperbolic Radon transform (ASHRT) is an extension of hyperbolic Radon transform (HRT). We have developed a novel sparsity-promoting framework for ASHRT by employing curvelet transform (CT) in the sparse inversion. RT-based seismic data processing can be considered as an optimization problem and a mixed norms inversion, therefore, objective function with CT can promote the sparsity of the transformed domain, which makes the sparse inversion more efficient. Compared with the conventional sparse inversion of ASHRT, the proposed method weights the sparse penalization, which indicates a sparser solution of ASHRT. We use synthetic and field data examples to demonstrate the performance of ASHRT. Compared to the conventional solution, the ours may lead to more accurately reconstructed results and have a better noise immunity.

[1]  Mauricio D. Sacchi,et al.  Estimation of the discrete Fourier transform, a linear inversion approach , 1996 .

[2]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[3]  Weilin Huang,et al.  Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method , 2016 .

[4]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[5]  Siyuan Cao,et al.  One-Step Slope Estimation for Dealiased Seismic Data Reconstruction via Iterative Seislet Thresholding , 2016, IEEE Geoscience and Remote Sensing Letters.

[6]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[7]  G. Poole,et al.  Fast and robust deblending using Apex Shifted Radon transform , 2012 .

[8]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .

[9]  Mauricio D. Sacchi,et al.  High‐resolution velocity gathers and offset space reconstruction , 1995 .

[10]  Shaohuan Zu,et al.  Interpolating Big Gaps Using Inversion With Slope Constraint , 2016, IEEE Geoscience and Remote Sensing Letters.

[11]  Wen-kai Lu,et al.  2D and 3D prestack seismic data regularization using an accelerated sparse time-invariant Radon transform , 2014 .

[12]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[13]  Peter W. Cary The Simplest Discrete Radon Transform , 1998 .

[14]  Yangkang Chen,et al.  Irregular seismic data reconstruction using a percentile-half-thresholding algorithm , 2014 .

[15]  Mauricio D. Sacchi,et al.  Seismic data reconstruction using multidimensional prediction filters , 2008 .

[16]  Yangkang Chen,et al.  A periodically varying code for improving deblending of simultaneous sources in marine acquisition , 2016 .

[17]  Amr Ibrahim Separating Simultaneous Seismic Sources using Robust Inversion of Radon and Migration Operators , 2016, 1711.10214.

[18]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[19]  Yangkang Chen,et al.  Amplitude-preserving nonlinear adaptive multiple attenuation using the high-order sparse Radon transform , 2016 .

[20]  Wei Liu,et al.  An effective approach to attenuate random noise based on compressive sensing and curvelet transform , 2016 .

[21]  Yangkang Chen,et al.  Multi-step damped multichannel singular spectrum analysis for simultaneous reconstruction and denoising of 3D seismic data , 2016 .

[22]  Mauricio D. Sacchi,et al.  Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .

[23]  Yangkang Chen,et al.  Simultaneous-Source Separation Using Iterative Seislet-Frame Thresholding , 2016, IEEE Geoscience and Remote Sensing Letters.

[24]  Yangkang Chen,et al.  Deblending of Simultaneous-source Seismic Data using Fast Iterative Shrinkage-thresholding Algorithm with Firm-thresholding , 2016, Acta Geophysica.

[25]  Felix J. Herrmann,et al.  Optimization strategies for sparseness- and continuity- enhanced imaging : Theory , 2005 .

[26]  Jon F. Claerbout,et al.  Velocity-stack and slant-stack stochastic inversion , 1985 .

[27]  Zhihui Wang,et al.  Separation of prestack seismic diffractions using an improved sparse apex-shifted hyperbolic Radon transform , 2016 .

[28]  Yangkang Chen,et al.  Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint , 2015, IEEE Geoscience and Remote Sensing Letters.

[29]  Marcus Carlsson,et al.  Fast hyperbolic Radon transform represented as convolutions in log-polar coordinates , 2016, Comput. Geosci..

[30]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2016 .

[31]  Mauricio D. Sacchi,et al.  Latest views of the sparse Radon transform , 2003 .

[32]  C. O. H. Hindriks,et al.  Reconstruction of band‐limited signals, irregularly sampled along one spatial direction , 1999 .

[33]  Yangkang Chen,et al.  Amplitude-preserving iterative deblending of simultaneous source seismic data using high-order Radon transform , 2017 .

[34]  Mauricio D. Sacchi,et al.  Fourier Reconstruction of Nonuniformly Sampled, Aliased Seismic Data , 2022 .

[35]  Wenkai Lu,et al.  An accelerated sparse time-invariant Radon transform in the mixed frequency-time domain based on iterative 2D model shrinkage , 2013 .

[36]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2015, GEOPHYSICS.

[37]  Xiang Li,et al.  Efficient least‐squares imaging with sparsity promotion and compressive sensing , 2012 .

[38]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[39]  Felix J. Herrmann,et al.  Curvelet-based seismic data processing : A multiscale and nonlinear approach , 2008 .

[40]  Mauricio D. Sacchi,et al.  Fast simultaneous seismic source separation using Stolt migration and demigration operators , 2015 .

[41]  Xiangbo Gong,et al.  Prestack seismic data regularization using a time-variant anisotropic Radon transform , 2016 .

[42]  Xiangbo Gong,et al.  Velocity analysis using high-resolution semblance based on sparse hyperbolic Radon transform , 2016 .

[43]  Yanghua Wang Seismic trace interpolation in the f‐x‐y domain , 2002 .

[44]  Juefu Wang,et al.  Seismic data interpolation by greedy local Radon transform , 2010 .

[45]  M. Sacchi,et al.  Separation and reconstruction of simultaneous source data via iterative rank reduction , 2015 .

[46]  Yanfei Wang,et al.  Accelerating seismic interpolation with a gradient projection method based on tight frame property of curvelet , 2015 .

[47]  Mauricio D. Sacchi,et al.  Simultaneous source separation using a robust Radon transform , 2014 .

[48]  Daniel Trad,et al.  Interpolation and multiple attenuation with migration operators , 2003 .

[49]  Sanyi Yuan,et al.  Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation , 2016 .

[50]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization , 2005 .

[51]  Benfeng Wang,et al.  Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform , 2015 .

[52]  M. Sacchi,et al.  Wavefield Reconstruction using a Stolt-Based Asymptote and Apex Shifted Hyperbolic Radon Transform , 2015 .

[53]  Felix J. Herrmann,et al.  Modified Gauss-Newton full-waveform inversion explained — Why sparsity-promoting updates do matter , 2016 .

[54]  Yangkang Chen,et al.  Seismic data interpolation using nonlinear shaping regularization , 2014 .

[55]  Rayan Saab,et al.  Bayesian wavefield separation by transform-domain sparsity promotion , 2008 .

[57]  Felix J. Herrmann,et al.  Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.

[58]  Wei Chen,et al.  An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction , 2016, Comput. Geosci..

[59]  Milton J. Porsani,et al.  Seismic trace interpolation using half-step prediction filters , 1999 .

[60]  Y. Chen,et al.  Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform , 2016 .

[61]  Mauricio D. Sacchi,et al.  Seismic data reconstruction using multidimensional prediction filters , 2010 .

[62]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[63]  Siyuan Cao,et al.  Reconstruction of seismic data with missing traces based on local random sampling and curvelet transform , 2015 .