Global Error Bound for the Generalized Linear Complementarity Problem over a Polyhedral Cone

In this paper, the global error bound estimation for the generalized linear complementarity problem over a polyhedral cone (GLCP) is considered. To obtain a global error bound for the GLCP, we first develop some equivalent reformulations of the problem under milder conditions and then characterize the solution set of the GLCP. Based on this, an easily computable global error bound for the GLCP is established. The results obtained in this paper can be taken as an extension of the existing global error bound for the classical linear complementarity problems.

[1]  Roberto Andreani,et al.  On the Resolution of the Generalized Nonlinear Complementarity Problem , 2002, SIAM J. Optim..

[2]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[3]  G. Habetler,et al.  Existence theory for generalized nonlinear complementarity problems , 1971 .

[4]  J. Pang,et al.  Error bounds for the linear complementarity problem with a P-matrix , 1990 .

[5]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[6]  Olvi L. Mangasarian,et al.  Error bounds for nondegenerate monotone linear complementarity problems , 1990, Math. Program..

[7]  Olvi L. Mangasarian,et al.  New improved error bounds for the linear complementarity problem , 1994, Math. Program..

[8]  Yiju Wang,et al.  A Newton-type algorithm for generalized linear complementarity problem over a polyhedral cone , 2005, Appl. Math. Comput..

[9]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[10]  Olvi L. Mangasarian,et al.  New Error Bounds for the Linear Complementarity Problem , 1994, Math. Oper. Res..

[11]  Naihua Xiu,et al.  Global s-type error bound for the extended linear complementarity problem and applications , 2000, Math. Program..

[12]  Yiju Wang,et al.  A Nonsmooth L-M Method for Solving the Generalized Nonlinear Complementarity Problem over a Polyhedral Cone , 2005 .

[13]  M. Fukushima,et al.  Equivalence of the generalized complementarity problem to differentiable unconstrained minimization , 1996 .

[14]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[15]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[16]  Olvi L. Mangasarian,et al.  Error bounds for monotone linear complementarity problems , 1986, Math. Program..

[17]  F. Giannessi,et al.  Variational Analysis and Applications , 2005 .

[18]  S. Karamardian Generalized complementarity problem , 1970 .