Global Error Bound for the Generalized Linear Complementarity Problem over a Polyhedral Cone
暂无分享,去创建一个
[1] Roberto Andreani,et al. On the Resolution of the Generalized Nonlinear Complementarity Problem , 2002, SIAM J. Optim..
[2] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[3] G. Habetler,et al. Existence theory for generalized nonlinear complementarity problems , 1971 .
[4] J. Pang,et al. Error bounds for the linear complementarity problem with a P-matrix , 1990 .
[5] Jong-Shi Pang,et al. Error bounds in mathematical programming , 1997, Math. Program..
[6] Olvi L. Mangasarian,et al. Error bounds for nondegenerate monotone linear complementarity problems , 1990, Math. Program..
[7] Olvi L. Mangasarian,et al. New improved error bounds for the linear complementarity problem , 1994, Math. Program..
[8] Yiju Wang,et al. A Newton-type algorithm for generalized linear complementarity problem over a polyhedral cone , 2005, Appl. Math. Comput..
[9] A. Hoffman. On approximate solutions of systems of linear inequalities , 1952 .
[10] Olvi L. Mangasarian,et al. New Error Bounds for the Linear Complementarity Problem , 1994, Math. Oper. Res..
[11] Naihua Xiu,et al. Global s-type error bound for the extended linear complementarity problem and applications , 2000, Math. Program..
[12] Yiju Wang,et al. A Nonsmooth L-M Method for Solving the Generalized Nonlinear Complementarity Problem over a Polyhedral Cone , 2005 .
[13] M. Fukushima,et al. Equivalence of the generalized complementarity problem to differentiable unconstrained minimization , 1996 .
[14] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[15] M. Fukushima,et al. On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .
[16] Olvi L. Mangasarian,et al. Error bounds for monotone linear complementarity problems , 1986, Math. Program..
[17] F. Giannessi,et al. Variational Analysis and Applications , 2005 .
[18] S. Karamardian. Generalized complementarity problem , 1970 .