Simple Chaotic Flows with a Curve of Equilibria

Using a systematic computer search, four simple chaotic flows with cubic nonlinearities were found that have the unusual feature of having a curve of equilibria. Such systems belong to a newly introduced category of chaotic systems with hidden attractors that are important and potentially problematic in engineering applications.

[1]  Nikolay V. Kuznetsov,et al.  IWCFTA2012 Keynote Speech I - Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits , 2012 .

[2]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[3]  Julien Clinton Sprott,et al.  NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach , 2016 .

[4]  Julien Clinton Sprott,et al.  A chaotic system with a single unstable node , 2015 .

[5]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[6]  Julien Clinton Sprott,et al.  Limitation of Perpetual Points for Confirming Conservation in Dynamical Systems , 2015, Int. J. Bifurc. Chaos.

[7]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[8]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[9]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Methods for Hidden Attractors’ Localization: The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits , 2013 .

[10]  Viet-Thanh Pham,et al.  Three-Dimensional Chaotic Autonomous System with a Circular Equilibrium: Analysis, Circuit Implementation and Its Fractional-Order Form , 2016, Circuits Syst. Signal Process..

[11]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[12]  Julien Clinton Sprott,et al.  A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints , 2014, Int. J. Bifurc. Chaos.

[13]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[14]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[15]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[16]  Julien Clinton Sprott,et al.  Recent new examples of hidden attractors , 2015 .

[17]  Viet-Thanh Pham,et al.  Synchronization and circuit design of a chaotic system with coexisting hidden attractors , 2015 .

[18]  Viet-Thanh Pham,et al.  A Novel No-Equilibrium Chaotic System with Multiwing Butterfly Attractors , 2015, Int. J. Bifurc. Chaos.

[19]  Awadhesh Prasad,et al.  Controlling Dynamics of Hidden Attractors , 2015, Int. J. Bifurc. Chaos.

[20]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[21]  Sundarapandian Vaidyanathan,et al.  Hidden attractors in a chaotic system with an exponential nonlinear term , 2015 .

[22]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[23]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[24]  Nikolay V. Kuznetsov,et al.  Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems , 2011 .

[25]  Julien Clinton Sprott,et al.  Erratum to: ``Simple chaotic flows with a line equilibrium'' [Chaos, Solitons and Fractals 57 (2013) 79-84] , 2015 .

[26]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.

[27]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[28]  Viet-Thanh Pham,et al.  Is that Really Hidden? The Presence of Complex Fixed-Points in Chaotic Flows with No Equilibria , 2014, Int. J. Bifurc. Chaos.

[29]  G. A. Leonov,et al.  Hidden Oscillation in Dynamical Systems , 2010 .

[30]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[31]  Tomas Gotthans,et al.  New class of chaotic systems with circular equilibrium , 2015 .

[32]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[33]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[34]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[35]  Julien Clinton Sprott,et al.  Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor , 2014, Int. J. Bifurc. Chaos.

[36]  Zhouchao Wei,et al.  Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System , 2015, Int. J. Bifurc. Chaos.

[37]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[38]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[39]  G. Leonov,et al.  Hidden Oscillations in Dynamical Systems. 16 Hilbert’s Problem, Aizerman’s and Kalman’s Conjectures, Hidden Attractors in Chua’s Circuits , 2014 .