Registry-dependent interlayer potential for graphitic systems

Standard applications of density functional theory do not adequately describe the exfoliation energy of graphite. In fact, the local density approximation LDA and generalized gradient approximation GGA are in qualitative disagreement: the LDA binds at the experimental lattice constant, whereas the GGA does not. However, the variation in the energy under interlayer shifts, due predominantly to the overlap of orbitals not dispersion interactions , is nearly identical in these approximations. We combine these results with experimental information on the exfoliation energy to create an improved registry-dependent classical potential for the interlayer interaction in graphitic structures.

[1]  James C Ellenbogen,et al.  Nanotube-substrate interactions: distinguishing carbon nanotubes by the helical angle. , 2004, Physical review letters.

[2]  T. Hertel,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2003, cond-mat/0308451.

[3]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[4]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[5]  I. Milošević,et al.  Interaction between layers of the multi-wall carbon nanotubes , 2003 .

[6]  Angel Rubio,et al.  Anisotropy and interplane interactions in the dielectric response of graphite. , 2002, Physical review letters.

[7]  C. Landis,et al.  Curvature-induced polarization in carbon nanoshells , 2002 .

[8]  Miroslav Hodak,et al.  Van der Waals binding energies in graphitic structures , 2002 .

[9]  Crespi,et al.  Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes , 2000, Physical review letters.

[10]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[11]  Rodney S. Ruoff,et al.  Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes , 2000 .

[12]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[13]  I. Milošević,et al.  Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes , 1999 .

[14]  A. Buldum,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999, cond-mat/9906066.

[15]  Matthias M. Müller,et al.  Monolayers of graphite rotated by a defined angle: hexagonal superstructures by STM , 1999 .

[16]  P. Ajayan,et al.  Size Effects in Carbon Nanotubes , 1998, cond-mat/9811046.

[17]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[18]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[19]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[20]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[21]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[22]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[23]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[24]  Charlier,et al.  Energetics of multilayered carbon tubules. , 1993, Physical review letters.

[25]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[26]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[27]  Moore,et al.  Two-dimensional weak localization in partially graphitic carbons. , 1990, Physical review. B, Condensed matter.

[28]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[29]  A. D. Crowell,et al.  Laterally averaged interaction potentials for 1H2 and 2H2 on the (0001) graphite surface , 1982 .

[30]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[31]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[32]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[33]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[34]  L. Girifalco,et al.  Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System , 1956 .

[35]  Lothar Meyer,et al.  Lattice Constants of Graphite at Low Temperatures , 1955 .

[36]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[37]  A. H. R. Palser,et al.  Interlayer interactions in graphite and carbon nanotubes , 1999 .

[38]  J. Charlier,et al.  First-principles study of the stacking effect on the electronic properties of graphite(s) , 1994 .

[39]  H. G. Smith,et al.  Lattice Dynamics of Pyrolytic Graphite , 1972 .