Porous Organic Cages

Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal–organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability—properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs—especially during the past five years—of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure–function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.

[1]  F. Sancenón,et al.  Purely Covalent Molecular Cages and Containers for Guest Encapsulation , 2022, Chemical reviews.

[2]  Meilin Liu,et al.  Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor , 2022, Nature Communications.

[3]  Ryan M. Young,et al.  Electron-catalysed molecular recognition , 2022, Nature.

[4]  Dan Zhao,et al.  Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. , 2022, ACS nano.

[5]  A. Cooper,et al.  A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving , 2022, Nature Materials.

[6]  Yanan Si,et al.  Encapsulating metal nanoclusters inside porous organic cage towards enhanced radio-sensitivity and solubility , 2021 .

[7]  Jiayin Yuan,et al.  Ionic organic cage-encapsulated metal clusters for switchable catalysis , 2021, Cell Reports Physical Science.

[8]  Yinghua Jin,et al.  Post-synthetic modification of porous organic cages. , 2021, Chemical Society reviews.

[9]  N. Khashab,et al.  Xylene isomer separations by intrinsically porous molecular materials , 2021, Cell Reports Physical Science.

[10]  S. Joo,et al.  Catalyst- and Solvent-Free Synthesis of Chemically Stable Aza-Bridged Bis(phenanthroline) Macrocycle-Linked Covalent Organic Framework. , 2021, Angewandte Chemie.

[11]  J. Graf,et al.  Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions , 2021, Nature Chemistry.

[12]  J. F. Stoddart,et al.  Molecular Triangles: A New Class of Macrocycles. , 2021, Accounts of chemical research.

[13]  Jingjing Wei,et al.  Hierarchically Porous Organic Cages. , 2021, Angewandte Chemie.

[14]  Qiang Xu,et al.  Encapsulating Ultrastable Metal Nanoparticles within Reticular Schiff Base Nanospaces for Enhanced Catalytic Performance , 2021 .

[15]  M. Baik,et al.  Gigantic Porphyrinic Cages , 2020, Chem.

[16]  Feihe Huang,et al.  Molecular cages self-assembled via imine condensation in water. , 2020, Angewandte Chemie.

[17]  Mei Pan,et al.  Ultrafine Palladium Nanoparticles Stabilized in the Porous Liquid of Covalent Organic Cages for Photocatalytic Hydrogen Evolution , 2020 .

[18]  J. F. Stoddart,et al.  Suit[3]ane. , 2020, Journal of the American Chemical Society.

[19]  C. B. Reddy,et al.  Phosphine-Built-in Porous Organic Cage for Stabilization and Boosting the Catalytic Performance of Palladium Nanoparticles in Cross-Coupling of Aryl Halides. , 2020, ACS applied materials & interfaces.

[20]  H. Pang,et al.  Catalysis within coordination cages , 2020 .

[21]  J. Baeyens,et al.  Reviewing the thermo-chemical recycling of waste polyurethane foam. , 2020, Journal of environmental management.

[22]  Dan Zhao,et al.  Porous organic cages as synthetic water channels , 2020, Nature Communications.

[23]  W. Jin,et al.  Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation , 2020 .

[24]  Hong Wang,et al.  Advanced Heteroatom-Doped Porous Carbon Membranes Assisted by Poly(ionic liquid) Design and Engineering , 2020, Accounts of materials research.

[25]  Wenjing Wang,et al.  Reticular Chemistry in Construction of Porous Organic Cages. , 2020, Journal of the American Chemical Society.

[26]  Cheng Wang,et al.  Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. , 2020, Accounts of chemical research.

[27]  R. Clowes,et al.  3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes , 2020, Journal of the American Chemical Society.

[28]  M. Mastalerz,et al.  A Giant [8+12] Boronic Ester Cage with 48 Terminal Alkene Units in the Periphery for Postsynthetic Alkene Metathesis , 2020, Chemistry.

[29]  P. Mukherjee,et al.  Nucleation of Tiny Silver Nanoparticles Using a Tetrafacial Organic Molecular Barrel for Potential Use in Visible Light Triggered Photocatalysis. , 2020, Chemistry.

[30]  Yinghua Jin,et al.  Desymmetrized Vertex Design toward a Molecular Cage with Unusual Topology. , 2020, Angewandte Chemie.

[31]  Jiayin Yuan,et al.  Accelerating Crystallization of Open Organic Materials by Poly(ionic liquid)s , 2020, Angewandte Chemie.

[32]  J. F. Stoddart,et al.  Precious metal recovery from electronic waste by a porous porphyrin polymer , 2020, Proceedings of the National Academy of Sciences.

[33]  M. Carreon,et al.  Separation of Light Gases from Xenon over Porous Organic Cage Membranes. , 2020, ACS applied materials & interfaces.

[34]  Tong Liu,et al.  Ultrastable and Highly Catalytically Active N-Heterocyclic Carbene-Stabilized Gold Nanoparticles in Confined Spaces. , 2020, Angewandte Chemie.

[35]  Eric D. Bloch,et al.  Permanently Microporous Metal-Organic Polyhedra. , 2020, Chemical reviews.

[36]  Xiaoyun Liu,et al.  Controlled Hierarchical Self-Assembly of Catenated Cages. , 2020, Journal of the American Chemical Society.

[37]  Yingwei Li,et al.  Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts , 2020 .

[38]  Ryan M. Young,et al.  Cyclophane-Sustained Ultrastable Porphyrins. , 2020, Journal of the American Chemical Society.

[39]  C. Yavuz,et al.  Quantifying the nitrogen effect on CO2 capture using isoporous network polymers. , 2020, Chemical communications.

[40]  Danica Kragic,et al.  A Robotics-Inspired Screening Algorithm for Molecular Caging Prediction , 2020, J. Chem. Inf. Model..

[41]  Qiang Xu,et al.  Encapsulating Metal Nanocatalysts within Porous Organic Hosts , 2020 .

[42]  B. Cheng,et al.  Enhancing proton conductivity of proton exchange membrane with SPES nanofibers containing porous organic cage , 2020 .

[43]  J. Xin,et al.  Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification , 2020 .

[44]  Kunhui Liu,et al.  Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage , 2020, Nature Communications.

[45]  Jiayin Yuan,et al.  Poly(ionic liquid) composites. , 2020, Chemical Society reviews.

[46]  A. Cooper,et al.  The Chemistry of Porous Organic Molecular Materials , 2020, Advanced Functional Materials.

[47]  P. K. Bharadwaj,et al.  Flexibility Induced Encapsulation of Ultrafine Palladium Nanoparticles into Organic Cages for Tsuji-Trost Allylation. , 2020, ACS applied materials & interfaces.

[48]  K. Tung,et al.  Mesoporous Silica Thin Membrane with Tunable Pore Size for Ultra-high Permeation and Precise Molecular Separation. , 2020, ACS applied materials & interfaces.

[49]  Le Yang,et al.  Multifunctional Tubular Organic Cage-Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. , 2019, Angewandte Chemie.

[50]  Qiang Xu,et al.  Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis , 2019, Nano Research.

[51]  S. Bai,et al.  Template Synthesis of Metal Nanoparticles within Organic Cages , 2019 .

[52]  S. Dai,et al.  Transforming Porous Organic Cages into Porous Ionic Liquids via a Supramolecular Complexation Strategy. , 2019, Angewandte Chemie.

[53]  R. Clowes,et al.  Controlling gas selectivity in molecular porous liquids by tuning the cage window size. , 2019, Angewandte Chemie.

[54]  M. Hirscher,et al.  Barely porous organic cages for hydrogen isotope separation , 2019, Science.

[55]  Arkaprabha Giri,et al.  Organic nanocages: a promising testbed for catalytic CO2 conversion , 2019, Sustainable Energy & Fuels.

[56]  L. Curtiss,et al.  A chiral molecular propeller designed for unidirectional rotations on a surface , 2019, Nature Communications.

[57]  John S. O. Evans,et al.  Shape-persistent porous organic cage supported palladium nanoparticles as heterogeneous catalytic materials. , 2019, Nanoscale.

[58]  Qilei Song,et al.  Computational Evaluation of the Diffusion Mechanisms for C8 Aromatics in Porous Organic Cages , 2019, The Journal of Physical Chemistry C.

[59]  Huanting Wang,et al.  Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions , 2019, Advanced materials.

[60]  P. Mukherjee,et al.  Organic Imine Cages: Molecular Marriage and Applications , 2019, Angewandte Chemie.

[61]  R. Schröder,et al.  Transformation of a [4+6] Salicylbisimine Cage to Chemically Robust Amide Cages , 2019, Angewandte Chemie.

[62]  D. Challinor The charcoal , 2019, Excavation of Later Prehistoric and Roman Sites along the Route of the Newquay Strategic Road Corridor, Cornwall.

[63]  J. Gascón,et al.  Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra , 2019, Coordination Chemistry Reviews.

[64]  Jihong Yu,et al.  Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries , 2019, iScience.

[65]  Wei Zhou,et al.  Multifunctional porous hydrogen-bonded organic framework materials. , 2019, Chemical Society reviews.

[66]  Jianwen Jiang,et al.  Porous organic cages embedded in a lipid membrane for water desalination: A molecular simulation study , 2019, Journal of Membrane Science.

[67]  Ryan P. Lively,et al.  Molecularly Mixed Composite Membranes for Advanced Separation Processes. , 2019, Angewandte Chemie.

[68]  A. Stefankiewicz,et al.  Dynamic polyimine macrobicyclic cryptands – self-sorting with component selection , 2018, Chemical science.

[69]  C. Su,et al.  Metal‐Organic Cages for Biomedical Applications , 2018, Israel Journal of Chemistry.

[70]  M. Kurihara,et al.  Ferrihydrite Particle Encapsulated within a Molecular Organic Cage. , 2018, Journal of the American Chemical Society.

[71]  Jiayin Yuan,et al.  Ionic organic cage-encapsulating phase-transferable metal clusters , 2018, Chemical science.

[72]  J. F. Stoddart,et al.  Selective Extraction of C70 by a Tetragonal Prismatic Porphyrin Cage. , 2018, Journal of the American Chemical Society.

[73]  M. Mastalerz Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function. , 2018, Accounts of chemical research.

[74]  P. Mukherjee,et al.  Cage Encapsulated Gold Nanoparticles as Heterogeneous Photocatalyst for Facile and Selective Reduction of Nitroarenes to Azo Compounds. , 2018, Journal of the American Chemical Society.

[75]  Y. Himeda,et al.  Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid , 2018, Advanced Energy Materials.

[76]  K. Jelfs,et al.  Machine Learning for Organic Cage Property Prediction , 2018, Chemistry of Materials.

[77]  Dan Zhao,et al.  Advanced Porous Materials in Mixed Matrix Membranes , 2018, Advanced materials.

[78]  Michael J. Bennison,et al.  Computationally-inspired discovery of an unsymmetrical porous organic cage. , 2018, Nanoscale.

[79]  B. Alston,et al.  High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis , 2018, Nature Communications.

[80]  R. Schröder,et al.  Shape-Persistent Tetrahedral [4+6] Boronic Ester Cages with Different Degrees of Fluoride Substitution. , 2018, Chemistry.

[81]  R. Clowes,et al.  Core–Shell Crystals of Porous Organic Cages , 2018, Angewandte Chemie.

[82]  Bruno G. Nicolau,et al.  Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages. , 2018, Journal of the American Chemical Society.

[83]  Jiayin Yuan,et al.  Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring , 2018, Nature Communications.

[84]  Florian Beuerle,et al.  Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. , 2018, Angewandte Chemie.

[85]  H. Pang,et al.  Encapsulating highly catalytically active metal nanoclusters inside porous organic cages , 2018, Nature Catalysis.

[86]  Xiangru Kong,et al.  Amorphous Porous Organic Cage Membranes for Water Desalination , 2018 .

[87]  R. Schröder,et al.  Shape‐Persistent [4+4] Imine Cages with a Truncated Tetrahedral Geometry , 2018, Chemistry.

[88]  Ryan P. Lively,et al.  Formation Mechanisms and Defect Engineering of Imine-based Porous Organic Cages , 2018 .

[89]  T. Herng,et al.  A Three-Dimensionally π-Conjugated Diradical Molecular Cage. , 2017, Angewandte Chemie.

[90]  Yinghua Jin,et al.  Cage-templated synthesis of highly stable palladium nanoparticles and their catalytic activities in Suzuki–Miyaura coupling† †Electronic supplementary information (ESI) available: Detailed experimental materials, general synthetic procedures, TEM images, and spectral characterization data. See DOI: , 2017, Chemical science.

[91]  Feihe Huang,et al.  Reversible Iodine Capture by Nonporous Pillar[6]arene Crystals. , 2017, Journal of the American Chemical Society.

[92]  Craig M. Brown,et al.  Selective Gas Adsorption in Highly Porous Chromium(II)-Based Metal–Organic Polyhedra , 2017 .

[93]  Feihe Huang,et al.  Platinum(II)-Based Convex Trigonal-Prismatic Cages via Coordination-Driven Self-Assembly and C60 Encapsulation. , 2017, Inorganic chemistry.

[94]  J. F. Stoddart,et al.  Mastering the non-equilibrium assembly and operation of molecular machines. , 2017, Chemical Society reviews.

[95]  Jean-Pierre Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[96]  Ben L Feringa,et al.  The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.

[97]  J. Fraser Stoddart,et al.  Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[98]  R. Schröder,et al.  Transforming a chemically labile [2+3] imine cage into a robust carbamate cage. , 2017, Chemical communications.

[99]  Xiangru Kong,et al.  Porous organic cage membranes for water desalination: a simulation exploration. , 2017, Physical chemistry chemical physics : PCCP.

[100]  B. Alston,et al.  Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages , 2017, ACS central science.

[101]  G. Day,et al.  Application of computational methods to the design and characterisation of porous molecular materials. , 2017, Chemical Society reviews.

[102]  A. Cooper,et al.  Oriented Two‐Dimensional Porous Organic Cage Crystals , 2017, Angewandte Chemie.

[103]  A. Cooper Porous Molecular Solids and Liquids , 2017, ACS central science.

[104]  Wei Huang,et al.  From Discrete Molecular Cages to a Network of Cages Exhibiting Enhanced CO2 Adsorption Capacity. , 2017, Angewandte Chemie.

[105]  Bradley D. Smith,et al.  Synthetic mimics of biotin/(strept)avidin. , 2017, Chemical Society reviews.

[106]  K. Jelfs,et al.  Topological landscapes of porous organic cages. , 2017, Nanoscale.

[107]  L. Wessjohann,et al.  One-Pot Assembly of Amino Acid Bridged Hybrid Macromulticyclic Cages through Multiple Multicomponent Macrocyclizations. , 2017, Angewandte Chemie.

[108]  Qiang Xu,et al.  Bimetallic Metal–Organic Frameworks for Gas Storage and Separation , 2017 .

[109]  Hongchao Mao,et al.  Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation. , 2017, Journal of colloid and interface science.

[110]  Shilun Qiu,et al.  Porous Organic Materials: Strategic Design and Structure-Function Correlation. , 2017, Chemical reviews.

[111]  Michael J. Bennison,et al.  Understanding gas capacity, guest selectivity, and diffusion in porous liquids† †Electronic supplementary information (ESI) available: Detailed synthetic procedures, experimental details and measurements (PDF). See DOI: 10.1039/c6sc05196k Click here for additional data file. , 2017, Chemical science.

[112]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[113]  Qiang Xu,et al.  Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides , 2016 .

[114]  A. Cooper,et al.  Three-dimensional protonic conductivity in porous organic cage solids , 2016, Nature Communications.

[115]  A. Cooper,et al.  A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages , 2016, Chemistry of materials : a publication of the American Chemical Society.

[116]  R. Cao,et al.  Porous Organic Molecular Frameworks with Extrinsic Porosity: A Platform for Carbon Storage and Separation. , 2016, Angewandte Chemie.

[117]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[118]  Ryan P. Lively,et al.  Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance. , 2016, Chemistry.

[119]  B. Sumpter,et al.  Thermodynamics and Kinetics of Gas Storage in Porous Liquids. , 2016, The journal of physical chemistry. B.

[120]  Qiang Xu,et al.  Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. , 2016, Nature chemistry.

[121]  D. Leigh,et al.  An autonomous chemically fuelled small-molecule motor , 2016, Nature.

[122]  T. Uemura,et al.  Radical Polymerization of Vinyl Monomers in Porous Organic Cages. , 2016, Angewandte Chemie.

[123]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[124]  A. Cooper,et al.  Understanding static, dynamic and cooperative porosity in molecular materials† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc00713a , 2016, Chemical science.

[125]  A. Cooper,et al.  Porous Organic Cage Thin Films and Molecular‐Sieving Membranes , 2016, Advanced materials.

[126]  Qiang Xu,et al.  Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. , 2016, Chemical communications.

[127]  Yingbo Zhao,et al.  Covalent Chemistry beyond Molecules. , 2016, Journal of the American Chemical Society.

[128]  Jeffrey S. Moore,et al.  Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis. , 2016, Journal of the American Chemical Society.

[129]  Yinghua Jin,et al.  Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex? , 2016, Chemical science.

[130]  Partha Sarathi Mukherjee,et al.  Molecular Cage Impregnated Palladium Nanoparticles: Efficient, Additive-Free Heterogeneous Catalysts for Cyanation of Aryl Halides. , 2016, Journal of the American Chemical Society.

[131]  Shengming Xie,et al.  A chiral porous organic cage for molecular recognition using gas chromatography. , 2016, Analytica chimica acta.

[132]  R. Clowes,et al.  Porous Organic Cages for Sulfur Hexafluoride Separation , 2016, Journal of the American Chemical Society.

[133]  P. He,et al.  Highly selective separation of enantiomers using a chiral porous organic cage. , 2015, Journal of chromatography. A.

[134]  V. Lynch,et al.  Quantitative self-assembly of a purely organic three-dimensional catenane in water. , 2015, Nature chemistry.

[135]  F. Rominger,et al.  Crystal Structures of a Molecule Designed Not To Pack Tightly. , 2015, Chemistry.

[136]  Rebecca L. Greenaway,et al.  Liquids with permanent porosity , 2015, Nature.

[137]  Y. Ko,et al.  Porphyrin Boxes: Rationally Designed Porous Organic Cages. , 2015, Angewandte Chemie.

[138]  Nicolaas A. Vermeulen,et al.  Allosteric Modulation of Substrate Binding within a Tetracationic Molecular Receptor. , 2015, Journal of the American Chemical Society.

[139]  Florian Beuerle,et al.  Shape-Controlled Synthesis and Self-Sorting of Covalent Organic Cage Compounds. , 2015, Angewandte Chemie.

[140]  Huibi Xu,et al.  A Porous Tricyclooxacalixarene Cage Based on Tetraphenylethylene. , 2015, Angewandte Chemie.

[141]  F. Grepioni,et al.  Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. , 2015, Nature chemistry.

[142]  K. G. Sreejalekshmi,et al.  Propeller-shaped molecules with a thiazole hub: structural landscape and hydrazone cap mediated tunable host behavior in 4-hydrazino-1,3-thiazoles , 2015 .

[143]  Shengming Xie,et al.  Homochiral Porous Organic Cage with High Selectivity for the Separation of Racemates in Gas Chromatography. , 2015, Analytical chemistry.

[144]  Yinghua Jin,et al.  Solution-phase dynamic assembly of permanently interlocked aryleneethynylene cages through alkyne metathesis. , 2015, Angewandte Chemie.

[145]  T. Akita,et al.  Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer. , 2015, Journal of the American Chemical Society.

[146]  Hao Li,et al.  An artificial molecular pump. , 2015, Nature nanotechnology.

[147]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[148]  H. Uekusa,et al.  Self-Assembly of Nanometer-Sized Boroxine Cages from Diboronic Acids. , 2015, Journal of the American Chemical Society.

[149]  A. Coskun,et al.  Thinking Outside the Cage: Controlling the Extrinsic Porosity and Gas Uptake Properties of Shape-Persistent Molecular Cages in Nanoporous Polymers , 2015 .

[150]  Markus Schneider Modulare Synthese von diskreten porösen organischen Käfigverbindungen , 2015 .

[151]  A. Cooper,et al.  Porous Organic Cages for Gas Chromatography Separations , 2015 .

[152]  D. Sholl,et al.  Molecular Design of Amorphous Porous Organic Cages for Enhanced Gas Storage , 2015 .

[153]  F. Diederich,et al.  Molecular recognition in chemical and biological systems. , 2015, Angewandte Chemie.

[154]  M. Zeller,et al.  Targeted synthesis of a large triazine-based [4+6] organic molecular cage: structure, porosity and gas separation. , 2015, Chemical communications.

[155]  S. Dai,et al.  Porous liquids: a promising class of media for gas separation. , 2015, Angewandte Chemie.

[156]  P. Mukherjee,et al.  A fluorescent organic cage for picric acid detection. , 2014, Chemical communications.

[157]  A. Cooper,et al.  Separation of rare gases and chiral molecules by selective binding in porous organic cages. , 2014, Nature materials.

[158]  Yinghua Jin,et al.  A tetrameric cage with D2h symmetry through alkyne metathesis. , 2014, Angewandte Chemie.

[159]  Florian Beuerle,et al.  Dynamic covalent assembly of tribenzotriquinacenes into molecular cubes. , 2014, Chemical communications.

[160]  J. Dognon,et al.  Understanding a host-guest model system through ¹²⁹Xe NMR spectroscopic experiments and theoretical studies. , 2014, Angewandte Chemie.

[161]  S. Durot,et al.  Multiporphyrinic cages: architectures and functions. , 2014, Chemical reviews.

[162]  A. Cooper,et al.  Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic "tying" of a flexible amine cage. , 2014, Journal of the American Chemical Society.

[163]  Iris M. Oppel,et al.  A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. , 2014, Angewandte Chemie.

[164]  Edward O. Pyzer-Knapp,et al.  Predicted crystal energy landscapes of porous organic cages , 2014 .

[165]  M. D. Del Pópolo,et al.  Designing and understanding permanent microporosity in liquids. , 2014, Physical chemistry chemical physics : PCCP.

[166]  Philip Taynton,et al.  Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. , 2014, Accounts of chemical research.

[167]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[168]  P. Mukherjee,et al.  Hydrogen-bond-driven controlled molecular marriage in covalent cages. , 2014, Chemistry.

[169]  Iris M. Oppel,et al.  A permanent mesoporous organic cage with an exceptionally high surface area. , 2014, Angewandte Chemie.

[170]  A. Thornton,et al.  Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous Organic Cages , 2014 .

[171]  S. Kazarian,et al.  High-pressure carbon dioxide uptake for porous organic cages: comparison of spectroscopic and manometric measurement techniques. , 2013, Chemical communications.

[172]  S. Waldvogel,et al.  Direct gravimetric sensing of GBL by a molecular recognition process in organic cage compounds. , 2013, Chemical communications.

[173]  Wei Zhang,et al.  Covalent assembly of heterosequenced macrocycles and molecular cages through orthogonal dynamic covalent chemistry (ODCC). , 2013, Organic letters.

[174]  A. Flood,et al.  A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. , 2013, Nature chemistry.

[175]  Edward O. Pyzer-Knapp,et al.  In silico Design of Supramolecules from Their Precursors: Odd–Even Effects in Cage-Forming Reactions , 2013, Journal of the American Chemical Society.

[176]  R. Scopelliti,et al.  An imine-based molecular cage with distinct binding sites for small and large alkali metal cations. , 2013, Chemistry.

[177]  Roberto Millini,et al.  Porous materials in catalysis: challenges for mesoporous materials. , 2013, Chemical Society reviews.

[178]  Tamoghna Mitra,et al.  Molecular shape sorting using molecular organic cages. , 2013, Nature chemistry.

[179]  Christian J. Doonan,et al.  Kinetically controlled porosity in a robust organic cage material. , 2013, Angewandte Chemie.

[180]  Iris M. Oppel,et al.  Post-modification of the interior of porous shape-persistent organic cage compounds. , 2013, Angewandte Chemie.

[181]  J. Gawroński,et al.  Self-assembly of a covalent organic cage with exceptionally large and symmetrical interior cavity: the role of entropy of symmetry. , 2013, Chemical communications.

[182]  A. Cooper,et al.  Molecular simulations to understand and to design porous organic molecules , 2013 .

[183]  P. Mukherjee,et al.  Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation. , 2013, Journal of the American Chemical Society.

[184]  Hasmukh A. Patel,et al.  Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers , 2013, Nature Communications.

[185]  J. C. Barnes,et al.  ExBox: a polycyclic aromatic hydrocarbon scavenger. , 2013, Journal of the American Chemical Society.

[186]  R. Scopelliti,et al.  Synthesis of borasiloxane-based macrocycles by multicomponent condensation reactions in solution or in a ball mill. , 2013, Chemical communications.

[187]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[188]  S. R. Waldvogel,et al.  Porous Organic Cage Compounds as Highly Potent Affinity Materials for Sensing by Quartz Crystal Microbalances , 2012, Advanced materials.

[189]  N. Ponnuswamy,et al.  Discovery of an Organic Trefoil Knot , 2012, Science.

[190]  Junling Sun,et al.  Assembly of water-soluble, dynamic, covalent container molecules and their application in the room-temperature stabilization of protoadamantene. , 2012, Chemistry.

[191]  Hannes Hauswald,et al.  A shape-persistent exo-functionalized [4 + 6] imine cage compound with a very high specific surface area. , 2012, Chemical communications.

[192]  Yinghua Jin,et al.  Design strategies for shape-persistent covalent organic polyhedrons (COPs) through imine condensation/metathesis. , 2012, The Journal of organic chemistry.

[193]  A. Cooper,et al.  Alkylated organic cages: from porous crystals to neat liquids , 2012 .

[194]  K. Rissanen,et al.  Templated synthesis of a large and flexible covalent porphyrinic cage bearing orthogonal recognition sites. , 2012, Chemical communications.

[195]  A. Cooper,et al.  Reversible water uptake by a stable imine-based porous organic cage. , 2012, Chemical communications.

[196]  Jingping Zhang,et al.  Accurate Computation of Gas Uptake in Microporous Organic Molecular Crystals , 2012 .

[197]  Iris M. Oppel,et al.  Exo-functionalized shape-persistent [2+3] cage compounds: influence of molecular rigidity on formation and permanent porosity. , 2012, Chemistry.

[198]  M. Waller,et al.  Investigating inclusion complexes using quantum chemical methods. , 2012, Chemical Society reviews.

[199]  Rajamani Krishna,et al.  Diffusion in porous crystalline materials. , 2012, Chemical Society reviews.

[200]  J. Sanders,et al.  Templated dynamic synthesis of a [3]catenane. , 2012, Angewandte Chemie.

[201]  R. Banerjee,et al.  Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. , 2012, Nanoscale.

[202]  Wei Zhang,et al.  A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis. , 2011, Journal of the American Chemical Society.

[203]  A. Cooper,et al.  Large self-assembled chiral organic cages: synthesis, structure, and shape persistence. , 2011, Angewandte Chemie.

[204]  R. Clowes,et al.  A soft porous organic cage crystal with complex gas sorption behavior. , 2011, Chemistry.

[205]  A. Cooper,et al.  Molecular doping of porous organic cages. , 2011, Journal of the American Chemical Society.

[206]  Junling Sun,et al.  Rational design of a nanometre-sized covalent octahedron. , 2011, Chemical communications.

[207]  Y. Filinchuk,et al.  Dative boron–nitrogen bonds in structural supramolecular chemistry: multicomponent assembly of prismatic organic cages , 2011 .

[208]  A. Cooper,et al.  Selective gas sorption in a [2+3] 'propeller' cage crystal. , 2011, Chemical communications.

[209]  A. Cooper,et al.  Modular and predictable assembly of porous organic molecular crystals , 2011, Nature.

[210]  R. Noble,et al.  Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. , 2011, Journal of the American Chemical Society.

[211]  J. Dognon,et al.  Design and synthesis of new cryptophanes with intermediate cavity sizes. , 2011, Organic letters.

[212]  Wei Liu,et al.  Thin porous metal sheet-supported NaA zeolite membrane for water/ethanol separation , 2011 .

[213]  A. Cooper,et al.  Porous organic molecular solids by dynamic covalent scrambling. , 2011, Nature communications.

[214]  A. Cooper,et al.  On-off porosity switching in a molecular organic solid. , 2011, Angewandte Chemie.

[215]  A. Cooper,et al.  Triply interlocked covalent organic cages. , 2010, Nature chemistry.

[216]  N. McKeown,et al.  Heme-Like Coordination Chemistry Within Nanoporous Molecular Crystals , 2010, Science.

[217]  J. Cintrat,et al.  Scalable synthesis of cryptophane-1.1.1 and its functionalization. , 2010, Organic letters.

[218]  N. Iwasawa,et al.  Guest-induced dynamic self-assembly of two diastereomeric cage-like boronic esters. , 2009, Chemistry.

[219]  P. Brandão,et al.  Selective recognition of tetrahedral dianions by a hexaaza cryptand receptor. , 2009, Organic & biomolecular chemistry.

[220]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[221]  J. Atwood,et al.  Amorphous molecular organic solids for gas adsorption. , 2009, Angewandte Chemie.

[222]  R. Snurr,et al.  Using molecular simulation to characterise metal-organic frameworks for adsorption applications. , 2009, Chemical Society reviews.

[223]  H. Lee,et al.  Preparation of a Reversible Redox‐Controlled Cage‐Type Molecule Linked by Disulfide Bonds , 2009 .

[224]  R. Scopelliti,et al.  Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. , 2009, Journal of the American Chemical Society.

[225]  M. Mastalerz One-pot synthesis of a shape-persistent endo-functionalised nano-sized adamantoid compound. , 2008, Chemical communications.

[226]  H. Su,et al.  Crystallographic evidence of an unusual, pentagon-shaped folding pattern in a circular aromatic pentamer. , 2008, Organic letters.

[227]  H. Kagechika,et al.  Chiral spherical molecule constructed from aromatic amides: facile synthesis and highly ordered network structure in the crystal. , 2008, The Journal of organic chemistry.

[228]  R. Warmuth,et al.  Edge-directed dynamic covalent synthesis of a chiral nanocube. , 2008, Journal of the American Chemical Society.

[229]  G. Bernardinelli,et al.  An iminoboronate construction set for subcomponent self-assembly. , 2008, Chemistry.

[230]  R. Scopelliti,et al.  Multicomponent assembly of boronic acid based macrocycles and cages. , 2008, Angewandte Chemie.

[231]  K. Kataoka,et al.  Ion pair-driven heterodimeric capsule based on boronate esterification: construction and the dynamic behavior. , 2007, Journal of the American Chemical Society.

[232]  Susumu Kitagawa,et al.  Chemistry of coordination space of porous coordination polymers , 2007 .

[233]  Chun Zhang,et al.  Synthesis and structure of a triptycene-based nanosized molecular cage. , 2007, The Journal of organic chemistry.

[234]  I. Azumaya,et al.  Triple helical structure constructed by covalent bondings: effective synthesis by a pre-organized partial structure and helicity induced by aromatic–aromatic interactions , 2007 .

[235]  N. Iwasawa,et al.  Boronic esters as a system for crystallization-induced dynamic self-assembly equipped with an "on-off" switch for equilibration. , 2007, Journal of the American Chemical Society.

[236]  T. Kawase,et al.  Ball‐, Bowl‐, and Belt‐Shaped Conjugated Systems and Their Complexing Abilities: Exploration of the Concave—Convex π—π Interaction , 2007 .

[237]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[238]  Kouji Mitani,et al.  Molecular waterwheel (noria) from a simple condensation of resorcinol and an alkanedial. , 2006, Angewandte Chemie.

[239]  R. Warmuth,et al.  Solvent effects in thermodynamically controlled multicomponent nanocage syntheses. , 2006, Journal of the American Chemical Society.

[240]  Takeshi Kawase,et al.  Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex pi-pi interaction. , 2006, Chemical reviews.

[241]  Jürg Hulliger,et al.  Reversible sorption of nitrogen and xenon gas by the guest-free zeolite tris(o-phenylenedioxy)cyclotriphosphazene (TPP) , 2006 .

[242]  B. Gong,et al.  Cyclic aromatic oligoamides as highly selective receptors for the guanidinium ion. , 2005, Chemical communications.

[243]  J. L. Katz,et al.  Single-step synthesis of D3h-symmetric bicyclooxacalixarenes. , 2005, Organic letters.

[244]  Hua Guo,et al.  Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. , 2004, Journal of the American Chemical Society.

[245]  Stephen Mann,et al.  Dextran templating for the synthesis of metallic and metal oxide sponges , 2003, Nature materials.

[246]  T. Inomata,et al.  Gold nanocluster confined within a cage: template-directed formation of a hexaporphyrin cage and its confinement capability. , 2003, Chemical communications.

[247]  A. P. Davis,et al.  Phase transfer of monosaccharides through noncovalent interactions: Selective extraction of glucose by a lipophilic cage receptor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[248]  V. Lynch,et al.  First cryptand-like calixpyrrole: synthesis, x-ray structure, and anion binding properties of a bicyclic[,3,3,3]nonapyrrole. , 2001, Journal of the American Chemical Society.

[249]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[250]  P. Stang,et al.  Self-assembly of nanoscale cuboctahedra by coordination chemistry , 1999, Nature.

[251]  A. P. Davis,et al.  A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media. , 1998, Angewandte Chemie.

[252]  M. Fujita,et al.  Self-assembly of ten molecules into nanometre-sized organic host frameworks , 1995, Nature.

[253]  F. Vögtle,et al.  C60H60 and C54H48: Silver Ion Extraction with New Concave Hydrocarbons , 1995 .

[254]  Jeffrey S. Moore,et al.  Synthesis of three-dimensional nanoscaffolding , 1992 .

[255]  F. Vögtle,et al.  C36H36—Tetrahedral Clamping of Four Benzene Rings in a Spherical Hydrocarbon Framework , 1992 .

[256]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[257]  D. Cram,et al.  Constrictive binding of large guests by a hemicarcerand containing four portals , 1991 .

[258]  J. F. Stoddart,et al.  Trinacrene – a Product of Structure‐Directed Synthesis , 1989 .

[259]  David J. Williams,et al.  Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .

[260]  J. Tse,et al.  Crystal structure, CP/MAS xeon-129 and carbon-13 NMR of local ordering in Dianin's compound clathrates. , 1988, Journal of the American Chemical Society.

[261]  W. Cullen,et al.  The synthesis and structure of , 1987 .

[262]  K. Raymond,et al.  Ferric ion sequestering agents. 16. Template and stepwise syntheses of a macrobicyclic catechoylamide ferric ion sequestering agent , 1987 .

[263]  F. Vögtle,et al.  Functionalized, Oligocyclic Large Cavities — A Novel Siderophore† , 1984 .

[264]  C. Dietrich-Buchecker,et al.  NEW FAMILY OF MOLECULES: THE METALLO-CATENANES , 1984 .

[265]  Qiang Xu,et al.  Ultrafine Bimetallic Pt–Ni Nanoparticles Achieved by Metal–Organic Framework Templated Zirconia/Porous Carbon/Reduced Graphene Oxide: Remarkable Catalytic Activity in Dehydrogenation of Hydrous Hydrazine , 2019 .

[266]  Shengming Xie,et al.  Recent advances of application of porous molecular cages for enantioselective recognition and separation. , 2019, Journal of separation science.

[267]  C. Stern,et al.  Guest recognition enhanced by lateral interactions † , 2019 .

[268]  He-Kuan Luo,et al.  Engineering organic macrocycles and cages: versatile bonding approaches. , 2015, Chemistry, an Asian journal.

[269]  Douglas C. Friedman,et al.  Radically enhanced molecular recognition. , 2010, Nature chemistry.

[270]  S. James,et al.  Porous Liquids , 2019, Functional Organic Liquids.

[271]  C. Knobler,et al.  Host-guest complexation. 67. A highly adaptive and strongly binding hemicarcerand , 1994 .

[272]  O. Wennerström,et al.  Bicyclophanehexaene, a new case cyclophane from a sixfold wittig reaction , 1977 .

[273]  R. M. Barrer,et al.  Dianin's compound as a zeolitic sorbent , 1976 .