Rectangle shape recognition using one-dimensional array

This paper describes a new simple logical method for finding perspective rectangle structural shapes on the image. The proposed method uses a one (1) dimensional array to analyze the rectangular shape. Today machine vision is a useful tool for external feature measurement since it provides a reliable and objective means for evaluating products based on visual features. An ultimate goal of this project is to trap the rectangular shape objects. This paper focuses on one main primitive operation, i.e. shape analysis.

[1]  Beatrice Lazzerini,et al.  A fuzzy approach to 2D-shape recognition , 2001, IEEE Trans. Fuzzy Syst..

[2]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[3]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[4]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[5]  Z. Houkes,et al.  A new method for fast computation of moments based on 8-neighbor chain code applied to 2-D object recognition , 1997, 1997 IEEE International Conference on Intelligent Processing Systems (Cat. No.97TH8335).

[6]  Majumder Dtuta,et al.  Digital Image Processing and Analysis , 2004 .

[7]  F. Marcelloni,et al.  A Fuzzy Approach to 2-D Shape Recognition , 2001 .

[8]  Hans-Peter Seidel,et al.  Automatic 2D Shape Orientation by Example , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[9]  Yi Lu,et al.  Machine printed character segmentation --; An overview , 1995, Pattern Recognit..

[10]  Mahmoud I. Khalil,et al.  A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  M. Natsuga,et al.  Development of an automatic rice-quality inspection system , 2001 .

[13]  A. A. Zlatopolsky Automated document segmentation , 1994, Pattern Recognit. Lett..

[14]  F. Cheng,et al.  Identification of rice seed varieties using neural network. , 2005, Journal of Zhejiang University. Science. B.

[15]  Nick Barnes,et al.  Perspective Rectangle Detection , 2006 .