A comparison of global models for the solar wind interaction with Mars
暂无分享,去创建一个
Naoki Terada | Helmut Lammer | Michael W. Liemohn | Hiroyuki Shinagawa | Gérard Chanteur | Mats Holmström | Andrew F. Nagy | Uwe Motschmann | Ronan Modolo | Kaijun Liu | Yingjuan Ma | Dana M. Hurley | S. Barabash | Jasper Halekas | S. A. Ledvina | Hans Nilsson | Janet G. Luhmann | David A. Brain | H. Lammer | U. Motschmann | A. Nagy | M. Liemohn | S. Brecht | J. Luhmann | J. Halekas | S. Barabash | R. Modolo | M. Holmström | E. Kallio | D. Hurley | S. Bougher | D. Brain | E. Harnett | E. Dubinin | M. Fraenz | H. Nilsson | G. Chanteur | N. Terada | S. Ledvina | Yingjuan Ma | H. Shinagawa | Esa Kallio | Xiaoliang Fang | Stephen W. Bougher | Sven Simon | Eduard Dubinin | S. Simon | Markus Fraenz | A. Boesswetter | S. H. Brecht | Xiaohua Fang | Erika M. Harnett | Kaijun Liu | A. Boesswetter
[1] M. Maggi,et al. Ion escape at Mars: Comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements , 2006 .
[2] D. Mitchell,et al. Probing upper thermospheric neutral densities at Mars using electron reflectometry , 2005 .
[3] F. Duru,et al. Radar Soundings of the Ionosphere of Mars , 2005, Science.
[4] Kenneth G. Powell,et al. Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .
[5] D. Chaussee,et al. Solar wind flow about the terrestrial planets: 2. Comparison with gas dynamic theory and implications for solar‐planetary interactions , 1983 .
[6] M. Maggi,et al. Mass composition of the escaping plasma at Mars , 2006 .
[7] J. Forbes,et al. Mars Global Surveyor radio science electron density profiles : Neutral atmosphere implications , 2001 .
[8] Pekka Janhunen,et al. Ion escape from Mars in a quasi‐neutral hybrid model , 2002 .
[9] H. Rosenbauer,et al. Ions of planetary origin in the Martian magnetosphere (Phobos 2/Taus experiment) , 1991 .
[10] Stephen H. Brecht,et al. The Solar Wind Interaction With the Martian Ionosphere/Atmosphere , 2007 .
[11] R. M. Winglee,et al. High-resolution multifluid simulations of the plasma environment near the Martian magnetic anomalies , 2007 .
[12] C. Russell,et al. The magnetic barrier at Venus , 1991 .
[13] M. Lester,et al. Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields , 2008 .
[14] M. Acuna,et al. Factors controlling the location of the Bow Shock at Mars , 2002 .
[15] E. Möbius,et al. Charge states of energetic (≈0.5 MeV/n) ions in corotating interaction regions at 1 AU and implications on source populations , 2002 .
[16] S. McKenna-Lawlor,et al. Pickup ions near Mars associated with escaping oxygen atoms , 2002 .
[17] E. Kallio,et al. Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars‐solar wind interaction , 2001 .
[18] Uwe Motschmann,et al. Plasma boundaries at Mars: a 3-D simulation study , 2004 .
[19] S. Barabash,et al. Planetary ENA imaging: Effects of different interaction models for Mars , 2006 .
[20] A. Summers,et al. Hydromagnetic flow around the magnetosphere , 1966 .
[21] D. Mitchell,et al. A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data , 2003 .
[22] David R. Chesney,et al. Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.
[23] A. Matthews,et al. Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .
[24] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[25] Andrew F. Nagy,et al. Ion escape fluxes from Mars , 2007 .
[26] M. Acuna,et al. Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .
[27] S. Barabash,et al. Comparison of plasma data from ASPERA-3/Mars-Express with a 3-D hybrid simulation , 2007 .
[28] M. Dryer,et al. Application of the hypersonic analog to the standing shock of Mars , 1967 .
[29] N. Terada,et al. A three‐dimensional, multispecies, comprehensive MHD model of the solar wind interaction with the planet Venus , 2009 .
[30] David Andrew Brain,et al. Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .
[31] S. Bougher,et al. Vertical dust mixing and the interannual variations in the Mars thermosphere , 2007 .
[32] R. Lundin,et al. A comet‐like escape of ionospheric plasma from Mars , 2008 .
[33] Craig Stroud,et al. テキサス大気質研究2000における,地上での測定値を用いた無水PAN及び関連した揮発性有機化合物(VOC)の化学の調査 , 2003 .
[34] S. A. Ledvina,et al. Modeling and Simulating Flowing Plasmas and Related Phenomena , 2008 .
[35] E. Harnett,et al. The influence of a mini‐magnetopause on the magnetic pileup boundary at Mars , 2003 .
[36] Jeffrey R. Barnes,et al. General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data , 1999 .
[37] Ness,et al. Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.
[38] J. Connerney,et al. Martian magnetic morphology: Contributions from the solar wind and crust , 2003 .
[39] C. Russell,et al. Solar and interplanetary control of the location of the Venus bow shock , 1988 .
[40] Igor V. Sokolov,et al. Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .
[41] R. E. Johnson,et al. Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space , 2007 .
[42] U. Motschmann,et al. Physics of the Ion Composition Boundary: a comparative 3-D hybrid simulation study of Mars and Titan , 2007 .
[43] A. Rizzi,et al. SOLAR WIND FLOW PAST NONMAGNETIC PLANETS: VENUS AND MARS. , 1970 .
[44] Douglas S. Harned,et al. Quasineutral hybrid simulation of macroscopic plasma phenomena , 1982 .
[45] C. Russell,et al. The loss of ions from Venus through the plasma wake , 2007, Nature.
[46] R. Clancy,et al. Mars Global Surveyor aerobraking: Atmospheric trends and model interpretation , 1999 .
[47] D. Mitchell,et al. Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .
[48] K. Glassmeier,et al. Rosetta swing-by at Mars – an analysis of the ROMAP measurements in comparison with results of 3-D multi-ion hybrid simulations and MEX/ASPERA-3 data , 2009 .
[49] S. Brecht,et al. Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars , 1991 .
[50] F. Forget,et al. Simulating the density and thermal structure of the middle atmosphere (̃80-130 km) of Mars using the MGCM-MTGCM: A comparison with MEX/SPICAM observations , 2010 .
[51] R. Lundin,et al. Plasma Morphology at Mars. Aspera-3 Observations , 2007 .
[52] Raymond G. Roble,et al. Neutral Upper Atmosphere and Ionosphere Modeling , 2008 .
[53] S. Brecht. Magnetic asymmetries of unmagnetized planets , 1990 .
[54] D. Mitchell,et al. Variability of the altitude of the Martian sheath , 2005 .
[55] Alan Matthews,et al. Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary , 2006 .
[56] Pekka Janhunen,et al. Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions , 2010 .
[57] D. Mitchell,et al. Observations of the latitude dependence of the location of the martian magnetic pileup boundary , 2002 .
[58] M. Lopez-Valverde,et al. Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions , 2006 .
[59] S. Barabash,et al. Mars Global MHD Predictions of Magnetic Connectivity Between the Dayside Ionosphere and the Magnetospheric Flanks , 2007 .
[60] David P. Hinson,et al. Ionospheric characteristics above Martian crustal magnetic anomalies , 2005 .
[61] D. Mitchell,et al. Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars , 2002 .
[62] S. Brecht,et al. The loss of water from Mars: Numerical results and challenges , 2010 .
[63] S. Brecht,et al. Three-dimensional simulations of the solar wind interaction with Mars , 1993 .
[64] Nadine Gobron,et al. Radiation transfer model intercomparison (RAMI) exercise , 2001 .
[65] C. Russell,et al. The Martian magnetosheath: how Venus-like? , 2002 .
[66] R. Roble,et al. Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices , 1999 .
[67] S. Barabash,et al. Energetic neutral atoms at Mars 4. Imaging of planetary oxygen , 2002 .
[68] David L. Williamson,et al. An intercomparison of the climates simulated by 14 atmospheric general circulation models , 1991 .
[69] H. Lichtenegger,et al. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. , 2009, Astrobiology.
[70] S. Barabash,et al. On the properties of O+ and O2+ ions in a hybrid model and in Mars Express IMA/ASPERA-3 data: A case study , 2008 .
[71] J. Connerney,et al. The effects of crustal magnetic fields and the pressure balance in the high latitude ionosphere/atmosphere at Mars , 2005 .
[72] David P. Hinson,et al. MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere , 2004 .
[73] S. Barabash,et al. Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX‐ASPERA‐3 and MEX‐MARSIS observations , 2008 .
[74] Pekka Janhunen,et al. X rays from solar wind charge exchange at Mars: A comparison of simulations and observations , 2004 .
[75] Dana Hurley Crider,et al. The plasma Environment of Mars , 2004 .
[76] G. Chanteur,et al. Influence of the solar EUV flux on the Martian plasma environment , 2005 .
[77] C. Russell,et al. Comparative analysis of Venus and Mars magnetotails , 2008 .
[78] Robert M. Winglee,et al. Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events , 2006 .
[79] Stas Barabash,et al. Martian Atmospheric Erosion Rates , 2007, Science.
[80] A. Nagy,et al. On the effect of the martian crustal magnetic field on atmospheric erosion , 2008 .
[81] James A. Slavin,et al. Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape , 1981 .
[82] Pekka Janhunen,et al. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model , 2003 .
[83] Stephen H. Brecht,et al. Multidimensional simulations using hybrid particles codes , 1988 .
[84] Michael Hesse,et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .
[85] Ronan Modolo,et al. A global hybrid model for Titan's interaction with the Kronian plasma: Application to the Cassini Ta flyby , 2008 .
[86] S. Brecht. Hybrid simulations of the magnetic topology of Mars , 1997 .
[87] S. Barabash,et al. Numerical modeling of the magnetic topology near Mars auroral observations , 2007 .
[88] D. D. Zeeuw,et al. Pickup oxygen ion velocity space and spatial distribution around Mars , 2008 .
[89] Rickard N. Lundin,et al. Aspera/Phobos measurements of the ion outflow from the MARTIAN ionosphere , 1990 .