A comparison of global models for the solar wind interaction with Mars

We present initial results from the first community-wide effort to compare global plasma interaction model results for Mars. Seven modeling groups participated in this activity, using MHD, multi-fluid, and hybrid assumptions in their simulations. Moderate solar wind and solar EUV conditions were chosen, and the conditions were implemented in the models and run to steady state. Model output was compared in three ways to determine how pressure was partitioned and conserved in each model, the location and asymmetry of plasma boundaries and pathways for planetary ion escape, and the total escape flux of planetary oxygen ions. The two participating MHD models provided similar results, while the five sets of multi-fluid and hybrid results were different in many ways. All hybrid results, however, showed two main channels for oxygen ion escape (a pickup ion 'plume' in the hemisphere toward which the solar wind convection electric field is directed, and a channel in the opposite hemisphere of the central magnetotail), while the MHD models showed one (a roughly symmetric channel in the central magnetotail). Most models showed a transition from an upstream region dominated by plasma dynamic pressure to a magnetosheath region dominated by thermal pressure to a low altitude region dominated by magnetic pressure. However, calculated escape rates for a single ion species varied by roughly an order of magnitude for similar input conditions, suggesting that the uncertainties in both the current and integrated escape over martian history as determined by models are large. These uncertainties are in addition to those associated with the evolution of the Sun, the martian dynamo, and the early atmosphere, highlighting the challenges we face in constructing Mars' past using models.

[1]  M. Maggi,et al.  Ion escape at Mars: Comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements , 2006 .

[2]  D. Mitchell,et al.  Probing upper thermospheric neutral densities at Mars using electron reflectometry , 2005 .

[3]  F. Duru,et al.  Radar Soundings of the Ionosphere of Mars , 2005, Science.

[4]  Kenneth G. Powell,et al.  Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .

[5]  D. Chaussee,et al.  Solar wind flow about the terrestrial planets: 2. Comparison with gas dynamic theory and implications for solar‐planetary interactions , 1983 .

[6]  M. Maggi,et al.  Mass composition of the escaping plasma at Mars , 2006 .

[7]  J. Forbes,et al.  Mars Global Surveyor radio science electron density profiles : Neutral atmosphere implications , 2001 .

[8]  Pekka Janhunen,et al.  Ion escape from Mars in a quasi‐neutral hybrid model , 2002 .

[9]  H. Rosenbauer,et al.  Ions of planetary origin in the Martian magnetosphere (Phobos 2/Taus experiment) , 1991 .

[10]  Stephen H. Brecht,et al.  The Solar Wind Interaction With the Martian Ionosphere/Atmosphere , 2007 .

[11]  R. M. Winglee,et al.  High-resolution multifluid simulations of the plasma environment near the Martian magnetic anomalies , 2007 .

[12]  C. Russell,et al.  The magnetic barrier at Venus , 1991 .

[13]  M. Lester,et al.  Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields , 2008 .

[14]  M. Acuna,et al.  Factors controlling the location of the Bow Shock at Mars , 2002 .

[15]  E. Möbius,et al.  Charge states of energetic (≈0.5 MeV/n) ions in corotating interaction regions at 1 AU and implications on source populations , 2002 .

[16]  S. McKenna-Lawlor,et al.  Pickup ions near Mars associated with escaping oxygen atoms , 2002 .

[17]  E. Kallio,et al.  Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars‐solar wind interaction , 2001 .

[18]  Uwe Motschmann,et al.  Plasma boundaries at Mars: a 3-D simulation study , 2004 .

[19]  S. Barabash,et al.  Planetary ENA imaging: Effects of different interaction models for Mars , 2006 .

[20]  A. Summers,et al.  Hydromagnetic flow around the magnetosphere , 1966 .

[21]  D. Mitchell,et al.  A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data , 2003 .

[22]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[23]  A. Matthews,et al.  Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .

[24]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[25]  Andrew F. Nagy,et al.  Ion escape fluxes from Mars , 2007 .

[26]  M. Acuna,et al.  Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .

[27]  S. Barabash,et al.  Comparison of plasma data from ASPERA-3/Mars-Express with a 3-D hybrid simulation , 2007 .

[28]  M. Dryer,et al.  Application of the hypersonic analog to the standing shock of Mars , 1967 .

[29]  N. Terada,et al.  A three‐dimensional, multispecies, comprehensive MHD model of the solar wind interaction with the planet Venus , 2009 .

[30]  David Andrew Brain,et al.  Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .

[31]  S. Bougher,et al.  Vertical dust mixing and the interannual variations in the Mars thermosphere , 2007 .

[32]  R. Lundin,et al.  A comet‐like escape of ionospheric plasma from Mars , 2008 .

[33]  Craig Stroud,et al.  テキサス大気質研究2000における,地上での測定値を用いた無水PAN及び関連した揮発性有機化合物(VOC)の化学の調査 , 2003 .

[34]  S. A. Ledvina,et al.  Modeling and Simulating Flowing Plasmas and Related Phenomena , 2008 .

[35]  E. Harnett,et al.  The influence of a mini‐magnetopause on the magnetic pileup boundary at Mars , 2003 .

[36]  Jeffrey R. Barnes,et al.  General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data , 1999 .

[37]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[38]  J. Connerney,et al.  Martian magnetic morphology: Contributions from the solar wind and crust , 2003 .

[39]  C. Russell,et al.  Solar and interplanetary control of the location of the Venus bow shock , 1988 .

[40]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[41]  R. E. Johnson,et al.  Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space , 2007 .

[42]  U. Motschmann,et al.  Physics of the Ion Composition Boundary: a comparative 3-D hybrid simulation study of Mars and Titan , 2007 .

[43]  A. Rizzi,et al.  SOLAR WIND FLOW PAST NONMAGNETIC PLANETS: VENUS AND MARS. , 1970 .

[44]  Douglas S. Harned,et al.  Quasineutral hybrid simulation of macroscopic plasma phenomena , 1982 .

[45]  C. Russell,et al.  The loss of ions from Venus through the plasma wake , 2007, Nature.

[46]  R. Clancy,et al.  Mars Global Surveyor aerobraking: Atmospheric trends and model interpretation , 1999 .

[47]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[48]  K. Glassmeier,et al.  Rosetta swing-by at Mars – an analysis of the ROMAP measurements in comparison with results of 3-D multi-ion hybrid simulations and MEX/ASPERA-3 data , 2009 .

[49]  S. Brecht,et al.  Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars , 1991 .

[50]  F. Forget,et al.  Simulating the density and thermal structure of the middle atmosphere (̃80-130 km) of Mars using the MGCM-MTGCM: A comparison with MEX/SPICAM observations , 2010 .

[51]  R. Lundin,et al.  Plasma Morphology at Mars. Aspera-3 Observations , 2007 .

[52]  Raymond G. Roble,et al.  Neutral Upper Atmosphere and Ionosphere Modeling , 2008 .

[53]  S. Brecht Magnetic asymmetries of unmagnetized planets , 1990 .

[54]  D. Mitchell,et al.  Variability of the altitude of the Martian sheath , 2005 .

[55]  Alan Matthews,et al.  Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary , 2006 .

[56]  Pekka Janhunen,et al.  Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions , 2010 .

[57]  D. Mitchell,et al.  Observations of the latitude dependence of the location of the martian magnetic pileup boundary , 2002 .

[58]  M. Lopez-Valverde,et al.  Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions , 2006 .

[59]  S. Barabash,et al.  Mars Global MHD Predictions of Magnetic Connectivity Between the Dayside Ionosphere and the Magnetospheric Flanks , 2007 .

[60]  David P. Hinson,et al.  Ionospheric characteristics above Martian crustal magnetic anomalies , 2005 .

[61]  D. Mitchell,et al.  Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars , 2002 .

[62]  S. Brecht,et al.  The loss of water from Mars: Numerical results and challenges , 2010 .

[63]  S. Brecht,et al.  Three-dimensional simulations of the solar wind interaction with Mars , 1993 .

[64]  Nadine Gobron,et al.  Radiation transfer model intercomparison (RAMI) exercise , 2001 .

[65]  C. Russell,et al.  The Martian magnetosheath: how Venus-like? , 2002 .

[66]  R. Roble,et al.  Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices , 1999 .

[67]  S. Barabash,et al.  Energetic neutral atoms at Mars 4. Imaging of planetary oxygen , 2002 .

[68]  David L. Williamson,et al.  An intercomparison of the climates simulated by 14 atmospheric general circulation models , 1991 .

[69]  H. Lichtenegger,et al.  Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. , 2009, Astrobiology.

[70]  S. Barabash,et al.  On the properties of O+ and O2+ ions in a hybrid model and in Mars Express IMA/ASPERA-3 data: A case study , 2008 .

[71]  J. Connerney,et al.  The effects of crustal magnetic fields and the pressure balance in the high latitude ionosphere/atmosphere at Mars , 2005 .

[72]  David P. Hinson,et al.  MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere , 2004 .

[73]  S. Barabash,et al.  Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX‐ASPERA‐3 and MEX‐MARSIS observations , 2008 .

[74]  Pekka Janhunen,et al.  X rays from solar wind charge exchange at Mars: A comparison of simulations and observations , 2004 .

[75]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[76]  G. Chanteur,et al.  Influence of the solar EUV flux on the Martian plasma environment , 2005 .

[77]  C. Russell,et al.  Comparative analysis of Venus and Mars magnetotails , 2008 .

[78]  Robert M. Winglee,et al.  Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events , 2006 .

[79]  Stas Barabash,et al.  Martian Atmospheric Erosion Rates , 2007, Science.

[80]  A. Nagy,et al.  On the effect of the martian crustal magnetic field on atmospheric erosion , 2008 .

[81]  James A. Slavin,et al.  Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape , 1981 .

[82]  Pekka Janhunen,et al.  Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model , 2003 .

[83]  Stephen H. Brecht,et al.  Multidimensional simulations using hybrid particles codes , 1988 .

[84]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[85]  Ronan Modolo,et al.  A global hybrid model for Titan's interaction with the Kronian plasma: Application to the Cassini Ta flyby , 2008 .

[86]  S. Brecht Hybrid simulations of the magnetic topology of Mars , 1997 .

[87]  S. Barabash,et al.  Numerical modeling of the magnetic topology near Mars auroral observations , 2007 .

[88]  D. D. Zeeuw,et al.  Pickup oxygen ion velocity space and spatial distribution around Mars , 2008 .

[89]  Rickard N. Lundin,et al.  Aspera/Phobos measurements of the ion outflow from the MARTIAN ionosphere , 1990 .