New Bounds for the Snake-in-the-Box Problem

The Snake-in-the-Box problem is that of finding a longest induced path in an n-dimensional hypercube. We prove new lower bounds for the values n ∈ {11, 12, 13}. The Coil-in-the-Box problem is that of finding a longest induced cycle in an n-dimensional hypercube. We prove new lower bounds for the values n ∈ {10, 11, 12, 13}.

[1]  Walter D. Potter,et al.  Finding Longest Paths in Hypercubes: 11 New Lower Bounds for Snakes, Coils, and Symmetrical Coils , 2015, IEA/AIE.

[2]  Joe Sawada,et al.  Snakes, coils, and single-track circuit codes with spread $$k$$k , 2015, J. Comb. Optim..

[3]  William H. Kautz,et al.  Unit-Distance Error-Checking Codes , 1958, IRE Trans. Electron. Comput..

[4]  Kenneth G. Paterson,et al.  Single-track Gray codes , 1996, IEEE Trans. Inf. Theory.

[5]  Pavel G. Emelyanov,et al.  On the maximal length of a snake in hypercubes of small dimension , 2000, Discret. Math..

[6]  Jerzy Wojciechowski,et al.  On constructing snakes in powers of complete graphs , 1998, Discret. Math..

[7]  Patric R. J. Östergård,et al.  On the maximum length of coil-in-the-box codes in dimension 8 , 2014, Discret. Appl. Math..

[8]  Walter D. Potter,et al.  Finding longest paths in hypercubes, snakes and coils , 2014, 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES).

[9]  Hunter S. Snevily The snake-in-the-box problem: A new upper bound , 1994, Discrete Mathematics.

[10]  Gilles Zémor An upper bound on the size of the snake-in-the-box , 1997, Comb..

[11]  Ed Wynn,et al.  Constructing circuit codes by permuting initial sequences , 2012, ArXiv.

[12]  David Kinny A New Approach to the Snake-In-The-Box Problem , 2012, ECAI.

[13]  Donald W. Davies,et al.  Longest "Separated" Paths and Loops in an N Cube , 1965, IEEE Trans. Electron. Comput..

[14]  Patric R. J. Östergård,et al.  Exhaustive Search for Snake-in-the-Box Codes , 2015, Graphs Comb..

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Richard C. Singleton,et al.  Generalized Snake-in-the-Box Codes , 1966, IEEE Trans. Electron. Comput..

[17]  John A. Miller,et al.  Using the genetic algorithm to find snake-in-the-box codes , 1994, IEA/AIE '94.