A Tangent Bundle Theory for Visual Curve Completion

Visual curve completion is a fundamental perceptual mechanism that completes the missing parts (e.g., due to occlusion) between observed contour fragments. Previous research into the shape of completed curves has generally followed an “axiomatic” approach, where desired perceptual/geometrical properties are first defined as axioms, followed by mathematical investigation into curves that satisfy them. However, determining psychophysically such desired properties is difficult and researchers still debate what they should be in the first place. Instead, here we exploit the observation that curve completion is an early visual process to formalize the problem in the unit tangent bundle R2 × S1, which abstracts the primary visual cortex (V1) and facilitates exploration of basic principles from which perceptual properties are later derived rather than imposed. Exploring here the elementary principle of least action in V1, we show how the problem becomes one of finding minimum-length admissible curves in R2 × S1. We formalize the problem in variational terms, we analyze it theoretically, and we formulate practical algorithms for the reconstruction of these completed curves. We then explore their induced visual properties vis-à-vis popular perceptual axioms and show how our theory predicts many perceptual properties reported in the corresponding perceptual literature. Finally, we demonstrate a variety of curve completions and report comparisons to psychophysical data and other completion models.

[1]  Raph Levien,et al.  The elastica: a mathematical history , 2008 .

[2]  Jitendra Malik,et al.  Learning Probabilistic Models for Contour Completion in Natural Images , 2008, International Journal of Computer Vision.

[3]  Raph Levien,et al.  The Euler spiral: a mathematical history , 2008 .

[4]  Walter Gerbino,et al.  Visual interpolation is not scale invariant , 2006, Vision Research.

[5]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[6]  Isaac Weiss 3-D Shape Representation by Contours , 1985, IJCAI.

[7]  D D Hoffman,et al.  Completing visual contours: The relationship between relatability and minimizing inflections , 1999, Perception & psychophysics.

[8]  Ohad Ben-Shahar,et al.  Minimum length in the tangent bundle as a model for curve completion , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Ohad Ben-Shahar,et al.  Geometrical Computations Explain Projection Patterns of Long-Range Horizontal Connections in Visual Cortex , 2004, Neural Computation.

[10]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[11]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[12]  Jacqueline M. Fulvio,et al.  Precision and consistency of contour interpolation , 2008, Vision Research.

[13]  J. Elder,et al.  Ecological statistics of Gestalt laws for the perceptual organization of contours. , 2002, Journal of vision.

[14]  B. O'neill Semi-Riemannian Geometry With Applications to Relativity , 1983 .

[15]  Benjamin B. Kimia,et al.  Euler Spiral for Shape Completion , 2003, International Journal of Computer Vision.

[16]  Jacqueline M. Fulvio,et al.  Visual extrapolation of contour geometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Manish Singh Modal and Amodal Completion Generate Different Shapes , 2004, Psychological science.

[18]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[19]  Scott D. Pauls,et al.  Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model , 2009, Journal of Mathematical Imaging and Vision.

[20]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[21]  R Malladi,et al.  Subjective surfaces: a method for completing missing boundaries. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[23]  Ohad Ben-Shahar,et al.  The perceptual organization of visual flows , 2003 .

[24]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[25]  Ohad Ben-Shahar,et al.  The Perceptual Organization of Texture Flow: A Contextual Inference Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[27]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[28]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[29]  Yoon Mo Jung,et al.  First-order modeling and stability analysis of illusory contours , 2005, J. Vis. Commun. Image Represent..

[30]  C. K. Ogden A Source Book Of Gestalt Psychology , 2013 .

[31]  P. Kellman,et al.  A theory of visual interpolation in object perception , 1991, Cognitive Psychology.

[32]  Manish Singh,et al.  An experimental criterion for consistency in interpolation of partly occluded contours. , 2009, Journal of vision.

[33]  W. Hoffman The visual cortex is a contact bundle , 1989 .

[34]  H Takeichi,et al.  The Effect of Curvature on Visual Interpolation , 1995, Perception.

[35]  Sharon E. Guttman,et al.  Contour interpolation revealed by a dot localization paradigm , 2004, Vision Research.

[36]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[37]  Ronen Basri,et al.  Completion Energies and Scale , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  W. Gerbino,et al.  Contour interpolation by vector-field combination. , 2003, Journal of vision.

[39]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[40]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[41]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Jean Petitot,et al.  Neurogeometry of V1 and Kanizsa Contours , 2002 .

[43]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  W. B. Pillsbury Beiträge zur Analyse der Gesichtswahrnehmungen , 1900 .

[45]  R. Shapley,et al.  Spatial and Temporal Properties of Illusory Contours and Amodal Boundary Completion , 1996, Vision Research.

[46]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[47]  Jeffrey S. Perry,et al.  Contour statistics in natural images: Grouping across occlusions , 2009, Visual Neuroscience.

[48]  J. Lund,et al.  Widespread periodic intrinsic connections in the tree shrew visual cortex. , 1982, Science.

[49]  D. Mumford Elastica and Computer Vision , 1994 .

[50]  S. Coren,et al.  SUBJECTIVE CONTOURS AND APPARENT DEPTH , 2005 .

[51]  Alessandro Sarti,et al.  Subjective Surfaces: A Geometric Model for Boundary Completion , 2000, International Journal of Computer Vision.

[52]  W. Eric L. Grimson,et al.  Shape Encoding and Subjective Contours , 1980, AAAI.

[53]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[54]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[55]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .