Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features

Abstract. The Bergen Climate Model (BCM) is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

[1]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[2]  Tianjun Zhou,et al.  Simulated variability of the Atlantic meridional overturning circulation , 2004 .

[3]  Trevor J. McDougall,et al.  Vertical Mixing and Cabbeling in Layered Models , 1998 .

[4]  R. D. Szoeke Equations of Motion Using Thermodynamic Coordinates , 2000 .

[5]  H. Douville,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[6]  M. Déqué,et al.  Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution , 1998 .

[7]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[8]  Nils Gunnar Kvamstø,et al.  Effects of simulated natural variability on Arctic temperature projections , 2005 .

[9]  Rainer Bleck,et al.  Salinity-driven Thermocline Transients in a Wind- and Thermohaline-forced Isopycnic Coordinate Model of the North Atlantic , 1992 .

[10]  A. Wittenberg,et al.  Spatial and temporal structure of Tropical Pacific interannual variability in 20th century coupled simulations , 2006 .

[11]  J. Geleyn,et al.  Interpolation of wind, temperature and humidity values from model levels to the height of measurement , 1988 .

[12]  B. Ådlandsvik,et al.  Water fluxes through the Barents Sea , 1997 .

[13]  Akio Arakawa,et al.  Numerical modeling of the atmosphere with an isentropic vertical coordinate , 1990 .

[14]  Donald J. Cavalieri,et al.  30‐Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability , 2003 .

[15]  Olivier Thual,et al.  Climatology and interannual variability simulated by the ARPEGE-OPA coupled model , 1995 .

[16]  M. Karcher,et al.  Current estimates of freshwater flux through Arctic and subarctic seas , 2007 .

[17]  K. Hasselmann,et al.  Arctic climate change: observed and modelled temperature and sea-ice variability , 2004 .

[18]  O. Otterå Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model , 2008 .

[19]  D. Salas Mélia,et al.  A global coupled sea ice–ocean model , 2002 .

[20]  Ursula Schauer,et al.  Atlantic Water flow through the Barents and Kara Seas , 2002 .

[21]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[22]  H. Loeng,et al.  Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters , 2002 .

[23]  Josef M. Oberhuber,et al.  Simulation of the atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulat , 1993 .

[24]  Philippe Gaspar,et al.  Modeling the Seasonal Cycle of the Upper Ocean , 1988 .

[25]  H. Drange,et al.  The sensitivity of the present‐day Atlantic meridional overturning circulation to freshwater forcing , 2003 .

[26]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 3. Salinity , 1994 .

[27]  R. Hallberg A thermobaric instability of Lagrangian vertical coordinate ocean models , 2005 .

[28]  R. Bleck,et al.  Multi-century simulations with the coupled GISS–HYCOM climate model: control experiments , 2006 .

[29]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[30]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[31]  Laurent Terray,et al.  OASIS : le couplage océan-atmosphère , 1995 .

[32]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[33]  H. Drange,et al.  Towards a more saline North Atlantic and a fresher Arctic under global warming , 2006 .

[34]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[35]  K. Speer,et al.  Large-Scale Vertical and Horizontal Circulation in the North Atlantic Ocean , 2003 .

[36]  Jure Cedilnik,et al.  A new sub-grid scale lift formulation in a mountain drag parameterisation scheme , 2008 .

[37]  Olivier Boucher,et al.  History of sulfate aerosol radiative forcings , 2002 .

[38]  John K. Dukowicz,et al.  Inclusion of Thermobaricity in Isopycnic-Coordinate Ocean Models , 1999 .

[39]  D. Hartmann,et al.  Eddies and the annular modes of climate variability , 1999 .

[40]  H. Drange,et al.  Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM , 2003 .

[41]  Carl Wunsch,et al.  Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data , 2000, Nature.

[42]  Ken Caldeira,et al.  Sensitivity of simulated salinities in a three-dimensional ocean general circulation model to vertical mixing of destabilizing surface fluxes , 1999 .

[43]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[44]  François Lott,et al.  A new subgrid‐scale orographic drag parametrization: Its formulation and testing , 1997 .

[45]  Christoph Heinze,et al.  Bergen Earth system model (BCM-C): model description and regional climate-carbon cycle feedbacks assessment , 2009 .

[46]  R. Spencer Global Oceanic Precipitation from the MSU during 1979—91 and Comparisons to Other Climatologies , 1993 .

[47]  John K. Dukowicz,et al.  Incremental Remapping as a Transport/Advection Algorithm , 2000 .

[48]  S. Østerhus,et al.  North Atlantic–Nordic Seas exchanges , 2000 .

[49]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[50]  K. Trenberth,et al.  Estimates of Meridional Atmosphere and Ocean Heat Transports , 2001 .

[51]  J. Wallace,et al.  Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability* , 2000 .

[52]  Trevor J. McDougall,et al.  An Assessment of Orthobaric Density in the Global Ocean , 2005 .

[53]  H. Drange,et al.  Revisiting effect of ocean diapycnal mixing on Atlantic meridional overturning circulation recovery in a freshwater perturbation simulation , 2008 .

[54]  Christoph Heinze,et al.  An isopycnic ocean carbon cycle model , 2009 .

[55]  Keith W. Dixon,et al.  Intercomparison of the Southern Ocean Circulations in IPCC Coupled Model Control Simulations , 2006 .

[56]  J. S. Godfrey,et al.  A 20-Yr Average of the Indonesian Throughflow: Regional Currents and the Interbasin Exchange , 2008 .

[57]  H. Drange,et al.  Transient response of the Atlantic Meridional Overturning Circulation to enhanced freshwater input to the Nordic Seas’Arctic Ocean in the Bergen Climate Model , 2004 .

[58]  Ronald J. Stouffer,et al.  A method for obtaining pre-twentieth century initial conditions for use in climate change studies , 2004 .

[59]  Mojib Latif,et al.  Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations , 2005 .

[60]  J. Mignot,et al.  Interannual to interdecadal variability of sea surface salinity in the Atlantic and its link to the atmosphere in a coupled model , 2004 .

[61]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[62]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 4. Temperature , 1994 .

[63]  Jean-François Mahfouf,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[64]  Rainer Bleck,et al.  A Wind-Driven Isopycnic Coordinate Model of the North and Equatorial Atlantic Ocean 1 , 1990 .

[65]  D. Legates,et al.  Mean seasonal and spatial variability in gauge‐corrected, global precipitation , 1990 .

[66]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[67]  R. Peterson,et al.  Volume Transport of the Antarctic Circumpolar Current from Bottom Pressure Measurements , 1985 .

[68]  F. Lott Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces , 1999 .