Nonparametric Regression via StatLSSVM
暂无分享,去创建一个
[1] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[2] H. Akaike. Statistical predictor identification , 1970 .
[3] N. L. Johnson,et al. Discrete Multivariate Distributions , 1998 .
[4] M. C. Jones,et al. Generalized jackknifing and higher order kernels , 1993 .
[5] Lipo Wang. Support vector machines : theory and applications , 2005 .
[6] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[7] Igor Vajda,et al. Generalized piecewise linear histograms , 2002 .
[9] P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .
[10] Johan A. K. Suykens,et al. Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression , 2011, IEEE Transactions on Neural Networks.
[11] László Györfi,et al. On piecewise linear density estimators , 1999 .
[12] Matt P. Wand,et al. Non-Standard Semiparametric Regression via BRugs , 2010 .
[13] P. Vieu,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[14] A. Meister. Deconvolution Problems in Nonparametric Statistics , 2009 .
[15] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[16] D. Ruppert,et al. Measurement Error in Nonlinear Models , 1995 .
[17] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[18] J. Simonoff. Smoothing Methods in Statistics , 1998 .
[19] F. J. Anscombe,et al. THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .
[20] C. Loader,et al. Simultaneous Confidence Bands for Linear Regression and Smoothing , 1994 .
[21] Ingo Steinwart,et al. Consistency and robustness of kernel-based regression in convex risk minimization , 2007, 0709.0626.
[22] P. Hall. On Bootstrap Confidence Intervals in Nonparametric Regression , 1992 .
[23] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[24] Ingo Steinwart,et al. Estimating conditional quantiles with the help of the pinball loss , 2011, 1102.2101.
[25] Johan A. K. Suykens,et al. Robustness of reweighted Least Squares Kernel Based Regression , 2010, J. Multivar. Anal..
[26] Johan A. K. Suykens,et al. Optimized fixed-size kernel models for large data sets , 2010, Comput. Stat. Data Anal..
[27] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[28] A. Bowman. An alternative method of cross-validation for the smoothing of density estimates , 1984 .
[29] R. Fildes. Journal of the Royal Statistical Society (B): Gary K. Grunwald, Adrian E. Raftery and Peter Guttorp, 1993, “Time series of continuous proportions”, 55, 103–116.☆ , 1993 .
[30] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[31] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[32] S. Lahiri,et al. On bandwidth choice in nonparametric regression with both short- and long-range dependent errors , 1995 .
[33] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[34] Johan A. K. Suykens,et al. Kernel Regression in the Presence of Correlated Errors , 2011, J. Mach. Learn. Res..
[35] Jianqing Fan. Test of Significance Based on Wavelet Thresholding and Neyman's Truncation , 1996 .
[36] Johan A. K. Suykens,et al. Robustness of Kernel Based Regression: A Comparison of Iterative Weighting Schemes , 2009, ICANN.
[37] T. Kneib,et al. BayesX: Analyzing Bayesian Structural Additive Regression Models , 2005 .
[38] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[39] Jing Hu,et al. Model Selection via Bilevel Optimization , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.
[40] Jana Jurečková,et al. Robust Statistical Methods with R , 2005 .
[41] Johan A. K. Suykens,et al. Weighted least squares support vector machines: robustness and sparse approximation , 2002, Neurocomputing.
[42] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[43] Yuhong Yang,et al. Nonparametric Regression with Correlated Errors , 2001 .
[44] James Stephen Marron,et al. Local minima in cross validation functions , 1991 .
[45] E. Sochett,et al. Factors affecting and patterns of residual insulin secretion during the first year of Type 1 (insulin-dependent) diabetes mellitus in children , 1987, Diabetologia.
[46] J. Mercer. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .
[47] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[48] D. H. Leung,et al. Cross-validation in nonparametric regression with outliers , 2005 .
[49] Jeffrey C. Lagarias,et al. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..
[50] Hans Edner,et al. Locally weighted least squares kernel regression and statistical evaluation of LIDAR measurements , 1996 .
[51] Kurt Hornik,et al. kernlab - An S4 Package for Kernel Methods in R , 2004 .
[52] Johan A. K. Suykens,et al. On Robustness in Kernel Based Regression , 2010, NIPS 2010.
[53] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[54] Johan A. K. Suykens,et al. Componentwise Least Squares Support Vector Machines , 2005, ArXiv.
[55] P. J. Huber. Robust Estimation of a Location Parameter , 1964 .
[56] Johan A. K. Suykens,et al. Coupled Simulated Annealing , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[57] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[58] Ingo Steinwart,et al. Consistency and robustness of kernel based regression , 2005 .
[59] Igor Vajda,et al. Nonnegative piecewise linear histograms , 2001 .
[60] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[61] Jing Hu,et al. Bilevel Model Selection for Support Vector Machines , 2007 .
[62] J. Marron,et al. Comparison of Two Bandwidth Selectors with Dependent Errors , 1991 .
[63] J. Hart. Kernel regression estimation with time series errors , 1991 .
[64] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[65] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[66] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[67] Andreas Brezger,et al. Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..