Conic Curve Fitting Using Particle Swarm Optimization: Parameter Tuning

We solve curve fitting problems using Particle Swarm Optimization (PSO). PSO is used to optimize control points and weights of two conic curves to a set of data points. PSO is used to find the best middle control point and weight for both conic curves to provide piecewise conics that preserve G^1 continuity. We present numerical result using parameter changes in PSO scheme. We obtain appropriate parameter values of PSO that provide best error and fastest time to solve curve fitting problem.

[1]  Han Tong Loh,et al.  Advances of Computational Intelligence in Industrial Systems , 2008, Studies in Computational Intelligence.

[2]  Marco Aldinucci,et al.  Computational Science - ICCS 2008, 8th International Conference, Kraków, Poland, June 23-25, 2008, Proceedings, Part I , 2008, ICCS.

[3]  Siti Mariyam Hj. Shamsuddin,et al.  Particle Swarm Optimization for NURBS Curve Fitting , 2009, 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization.

[4]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[5]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  Angel Cobo,et al.  Particle Swarm Optimization for Bézier Surface Reconstruction , 2008, ICCS.

[9]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[11]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[12]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .