Two-dimensional curved fronts in a periodic shear flow

Abstract This paper is devoted to the study of traveling fronts of reaction–diffusion equations with periodic advection in the whole plane R 2 . We are interested in curved fronts satisfying some “conical” conditions at infinity. We prove that there is a minimal speed c ∗ such that curved fronts with speed  c exist if and only if c ≥ c ∗ . Moreover, we show that such curved fronts are decreasing in the direction of propagation, that is, they are increasing in time. We also give some results about the asymptotic behaviors of the speed with respect to the advection, diffusion and reaction coefficients.

[1]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[2]  Lenya Ryzhik,et al.  KPP pulsating front speed-up by flows , 2007 .

[3]  Régis Monneau,et al.  Asymptotic properties and classification of bistable fronts with Lipschitz level sets , 2005 .

[4]  Masaharu Taniguchi,et al.  Existence and global stability of traveling curved fronts in the Allen-Cahn equations , 2005 .

[5]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[6]  Hans F. Weinberger,et al.  On spreading speeds and traveling waves for growth and migration models in a periodic habitat , 2002, Journal of mathematical biology.

[7]  Masaharu Taniguchi,et al.  Traveling Fronts of Pyramidal Shapes in the Allen-Cahn Equations , 2007, SIAM J. Math. Anal..

[8]  Mohammad El Smaily Pulsating travelling fronts: Asymptotics and homogenization regimes , 2007, European Journal of Applied Mathematics.

[9]  Régis Monneau,et al.  Existence and qualitative properties of multidimensional conical bistable fronts , 2005 .

[10]  J. Roquejoffre,et al.  Nontrivial large-time behaviour in bistable reaction–diffusion equations , 2009 .

[11]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[12]  L. Roques,et al.  Uniqueness and stability properties of monostable pulsating fronts , 2011 .

[13]  Grégoire Nadin,et al.  The Effect of the Schwarz Rearrangement on the Periodic Principal Eigenvalue of a Nonsymmetric Operator , 2010, SIAM J. Math. Anal..

[14]  Mohammad El Smaily Min–max formulæ for the speeds of pulsating travelling fronts in periodic excitable media , 2009, 0909.0986.

[15]  Masaharu Taniguchi,et al.  Existence and global stability of traveling curved fronts in the Allen-Cahn equations , 2005 .

[16]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[17]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[18]  François Hamel,et al.  Travelling Fronts and Entire Solutions¶of the Fisher-KPP Equation in ℝN , 2001 .

[19]  Henri Berestycki,et al.  The speed of propagation for KPP type problems. II , 2010 .

[20]  François Hamel,et al.  Existence of Nonplanar Solutions of a Simple Model of Premixed Bunsen Flames , 1999, SIAM J. Math. Anal..

[21]  J. Roquejoffre,et al.  Stability of travelling waves in a model for conical flames in two space dimensions , 2004 .

[22]  Lionel Roques,et al.  A viscosity solution method for the spreading speed formula in slowly varying media , 2011 .

[23]  S. Heinze Large Convection Limits for KPP Fronts , 2005 .

[24]  Andrej Zlatoš Sharp Asymptotics for KPP Pulsating Front Speed-Up and Diffusion Enhancement by Flows , 2007, 0704.1163.

[25]  Mohammad El Smaily,et al.  The speed of propagation for KPP reaction-diffusion equations within large drift , 2009, Advances in Differential Equations.

[26]  R. Monneau,et al.  Solutions of Semilinear Elliptic Equations in with Conical&Shaped Level Sets , 2000 .

[27]  François Hamel,et al.  The speed of propagation for KPP type problems. I: Periodic framework , 2005 .

[28]  M. Haragus,et al.  Almost Planar Waves in Anisotropic Media , 2006 .

[29]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[30]  Traveling fronts in space-time periodic media , 2009, 1609.01431.

[31]  Arnd Scheel,et al.  Corner defects in almost planar interface propagation , 2006 .

[32]  N. Nadirashvili,et al.  Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena , 2005 .

[33]  Masaharu Taniguchi,et al.  The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations , 2009 .

[34]  Lionel Roques,et al.  Homogenization and influence of fragmentation in a biological invasion model , 2009, 0907.4951.

[35]  François Hamel,et al.  Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity , 2008 .

[36]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.