Pressurelessly densified (Zr,Hf)B2-SiC ceramics by co-doping hafnium-boron carbides

[1]  Hejun Li,et al.  Ablation resistance of HfB2-SiC coating prepared by in-situ reaction method for SiC coated C/C composites , 2017 .

[2]  P. Lu,et al.  Thermal and electrical transport in ZrB2-SiC-WC ceramics up to 1800 °C , 2017 .

[3]  D. Sciti,et al.  Relationships between carbon fiber type and interfacial domain in ZrB2-based ceramics , 2016 .

[4]  M. Zakeri,et al.  Effect of HfB2 on microstructure and mechanical properties of ZrB2–SiC-based composites , 2016 .

[5]  G. Hilmas,et al.  Thermal Properties of Hf‐Doped ZrB2 Ceramics , 2015 .

[6]  V. Parameswaran,et al.  Dynamic compression behavior of reactive spark plasma sintered ultrafine grained (Hf, Zr)B-2-SiC composites , 2015 .

[7]  G. Hilmas,et al.  Sintering Mechanisms and Kinetics for Reaction Hot‐Pressed ZrB2 , 2015 .

[8]  G. Hilmas,et al.  Thermal Properties of (Zr, TM)B2 Solid Solutions with TM = Ta, Mo, Re, V, and Cr , 2015 .

[9]  Hailong Wang,et al.  The processing and properties of (Zr, Hf)B2–SiC nanostructured composites , 2014 .

[10]  J. Binner,et al.  Synthesis and spark plasma sintering of sub-micron HfB2: Effect of various carbon sources , 2014 .

[11]  Y. Yan,et al.  Mechanical properties and in-situ toughening mechanism of pressurelessly densified ZrB2–TiB2 ceramic composites , 2013 .

[12]  Y. Yan,et al.  High toughness in pressureless densified ZrB2-based composites co-doped with boron–titanium carbides , 2012 .

[13]  Jiecai Han,et al.  The effect of B4C on the microstructure and thermo-mechanical properties of HfB2-based ceramics , 2009 .

[14]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[15]  V. Smirnov,et al.  Phase diagram of the W2B5-ZrB2 system , 2005 .

[16]  M. Rahaman Ceramic Processing and Sintering , 1995 .

[17]  S. K. Naik,et al.  A constitutional diagram of the system TiC−HfC−“MoC” , 1977 .