Limiting behavior of the approximate second-order subdifferential of a convex function
暂无分享,去创建一个
[1] J. Hiriart-Urruty,et al. The Second-Order Subdifferential and the Dupin Indicatrices of a Non-Differentiable Convex Function , 1989 .
[2] J. Zowe,et al. Some remarks on the construction of higher order algorithms in convex optimization , 1983 .
[3] R. Rockafellar. First- and second-order epi-differentiability in nonlinear programming , 1988 .
[4] R. Tyrrell Rockafellar,et al. Second-Order Optimality Conditions in Nonlinear Programming Obtained by Way of Epi-Derivatives , 1989, Math. Oper. Res..
[5] R. T. Rockafellar,et al. Generalized second derivatives of convex functions and saddle functions , 1990 .
[6] U. Mosco. On the continuity of the Young-Fenchel transform , 1971 .
[7] J. Hiriart-Urruty. The approximate first-order and second-order directional derivatives for a convex function , 1983 .
[8] R. Rockafellar,et al. Maximal monotone relations and the second derivatives of nonsmooth functions , 1985 .
[9] Jean-Baptiste Hiriart-Urruty,et al. A new set-valued second-order derivative for convex functions , 1986 .
[10] J.-B. Hiriart-Urruty,et al. From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .
[11] Jean-Baptiste Hiriart-Urruty. Approximating a Second-Order Directional Derivative for Nonsmooth Convex Functions , 1982 .
[12] Jean-Baptiste Hiriart-Urruty. Limiting behaviour of the approximate first order and second order directional derivatives for a convex function , 1982 .
[13] Alberto Seeger,et al. Second Derivatives of a Convex Function and of Its Legendre-Fenchel Transformate , 1992, SIAM J. Optim..
[14] R. Poliquin. Proto-Differentiation of Subgradient Set-Valued Mappings , 1990, Canadian Journal of Mathematics.
[15] H. Attouch. Variational convergence for functions and operators , 1984 .
[16] Alberto Seeger. Analyse du second ordre de problèmes non différentiables , 1986 .
[17] J. Hiriart-Urruty,et al. Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .
[18] Ulrich G. Haussmann. A Probabilistic Approach to the Generalized Hessian , 1992, Math. Oper. Res..
[19] J. Hiriart-Urruty,et al. Calculus rules on a new set—valued second order derivative for convex functions , 1989 .
[20] Jean-Pierre Aubin,et al. Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..
[21] Roberto Cominetti,et al. A generalized second-order derivative in nonsmooth optimization , 1990 .
[22] J. Aubin,et al. Applied Nonlinear Analysis , 1984 .
[23] C. Lemaréchal. Constructing Bundle Methods for Convex Optimization , 1986 .
[24] A. Seeger. Complément de Schur et sous-différentiel du second ordre d'une fonction convexe , 1991 .