Limiting behavior of the approximate second-order subdifferential of a convex function

Hiriart-Urruty and the author recently introduced the notions of Dupin indicatrices for nonsmooth convex surfaces and studied them in connection with their concept of a second-order subdifferential for convex functions. They noticed that second-order subdifferentials can be viewed as limit sets of difference quotients involving approximate subdifferentials. In this paper, we elaborate this point in a more detailed way and discuss some related questions.

[1]  J. Hiriart-Urruty,et al.  The Second-Order Subdifferential and the Dupin Indicatrices of a Non-Differentiable Convex Function , 1989 .

[2]  J. Zowe,et al.  Some remarks on the construction of higher order algorithms in convex optimization , 1983 .

[3]  R. Rockafellar First- and second-order epi-differentiability in nonlinear programming , 1988 .

[4]  R. Tyrrell Rockafellar,et al.  Second-Order Optimality Conditions in Nonlinear Programming Obtained by Way of Epi-Derivatives , 1989, Math. Oper. Res..

[5]  R. T. Rockafellar,et al.  Generalized second derivatives of convex functions and saddle functions , 1990 .

[6]  U. Mosco On the continuity of the Young-Fenchel transform , 1971 .

[7]  J. Hiriart-Urruty The approximate first-order and second-order directional derivatives for a convex function , 1983 .

[8]  R. Rockafellar,et al.  Maximal monotone relations and the second derivatives of nonsmooth functions , 1985 .

[9]  Jean-Baptiste Hiriart-Urruty,et al.  A new set-valued second-order derivative for convex functions , 1986 .

[10]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[11]  Jean-Baptiste Hiriart-Urruty Approximating a Second-Order Directional Derivative for Nonsmooth Convex Functions , 1982 .

[12]  Jean-Baptiste Hiriart-Urruty Limiting behaviour of the approximate first order and second order directional derivatives for a convex function , 1982 .

[13]  Alberto Seeger,et al.  Second Derivatives of a Convex Function and of Its Legendre-Fenchel Transformate , 1992, SIAM J. Optim..

[14]  R. Poliquin Proto-Differentiation of Subgradient Set-Valued Mappings , 1990, Canadian Journal of Mathematics.

[15]  H. Attouch Variational convergence for functions and operators , 1984 .

[16]  Alberto Seeger Analyse du second ordre de problèmes non différentiables , 1986 .

[17]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[18]  Ulrich G. Haussmann A Probabilistic Approach to the Generalized Hessian , 1992, Math. Oper. Res..

[19]  J. Hiriart-Urruty,et al.  Calculus rules on a new set—valued second order derivative for convex functions , 1989 .

[20]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[21]  Roberto Cominetti,et al.  A generalized second-order derivative in nonsmooth optimization , 1990 .

[22]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[23]  C. Lemaréchal Constructing Bundle Methods for Convex Optimization , 1986 .

[24]  A. Seeger Complément de Schur et sous-différentiel du second ordre d'une fonction convexe , 1991 .