Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits
暂无分享,去创建一个
Alexis De Vos | Yvan Van Rentergem | Stijn De Baerdemacker | A. D. Vos | Y. V. Rentergem | S. Baerdemacker
[1] Steven Vandenbrande,et al. The Group of Dyadic Unitary Matrices , 2012, Open Syst. Inf. Dyn..
[2] Alexis De Vos,et al. The NEGATOR as a Basic Building Block for Quantum Circuits , 2013, Open Syst. Inf. Dyn..
[3] Dominique de Werra. Path colorings in bipartite graphs , 2005, Eur. J. Oper. Res..
[4] Alexis De Vos,et al. Matrix Calculus for Classical and Quantum Circuits , 2014, JETC.
[5] Lin Chen,et al. Decomposition of bipartite and multipartite unitary gates into the product of controlled unitary gates , 2015, 1501.02708.
[6] Olle Ingemar Elgerd,et al. Control systems theory , 1967 .
[7] Charles Clos,et al. A study of non-blocking switching networks , 1953 .
[8] Alexis De Vos,et al. Block-Z X Z synthesis of an arbitrary quantum circuit , 2015, 1512.07240.
[9] D. Michael Miller,et al. Transforming MCT Circuits to NCVW Circuits , 2011, RC.
[10] H. Jonathan Chao,et al. Matching algorithms for three-stage bufferless Clos network switches , 2003, IEEE Commun. Mag..
[11] Peter Selinger,et al. Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..
[12] A. Galindo,et al. Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.
[13] Jan De Beule,et al. Computing with the Square Root of NOT , 2009 .
[14] Dmitri Maslov,et al. Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[15] Alexis De Vos,et al. Reversible computing: from mathematical group theory to electronical circuit experiment , 2005, CF '05.
[16] Andrzej Jajszczyk. Nonblocking, repackable, and rearrangeable Clos networks: fifty years of the theory evolution , 2003, IEEE Commun. Mag..
[17] Alexis De Vos,et al. Multiple-Valued Reversible Logic Circuits , 2009, J. Multiple Valued Log. Soft Comput..
[18] D. M. Miller,et al. Upper bound on number of products in AND-OR-XOR expansion of logic functions , 1995 .
[19] Alexis De Vos,et al. Scaling a Unitary Matrix , 2014, Open Syst. Inf. Dyn..
[20] Frank K. Hwang,et al. Control Algorithms for Rearrangeable Clos Networks , 1983, IEEE Trans. Commun..
[21] Tsutomu Sasao,et al. Representations of Discrete Functions , 2011 .
[22] Thomas C. Bartee. Digital Computer Fundamentals , 1971 .
[23] Robert Wille,et al. Embedding of Large Boolean Functions for Reversible Logic , 2014, ACM J. Emerg. Technol. Comput. Syst..
[24] M. Wolf,et al. Sinkhorn normal form for unitary matrices , 2014, 1408.5728.
[25] N. Higham. Computing the polar decomposition with applications , 1986 .
[26] D. Bouwmeester,et al. The Physics of Quantum Information , 2000 .
[27] A. Hurwitz,et al. über die Erzeugung der Invarianten durch Integration , 1963 .
[28] Stefan Frehse,et al. RevKit: An Open Source Toolkit for the Design of Reversible Circuits , 2011, RC.
[29] Hartmut Fuhr,et al. On biunimodular vectors for unitary matrices , 2015, 1506.06738.
[30] Alexis De Vos,et al. Synthesis of reversible logic for nanoelectronic circuits , 2007, Int. J. Circuit Theory Appl..
[31] Rolf Drechsler,et al. Upper bounds for reversible circuits based on Young subgroups , 2014, Inf. Process. Lett..
[32] Alexis De Vos,et al. Young subgroups for reversible computers , 2008, Adv. Math. Commun..
[33] Andrew R. Jones,et al. A Combinatorial Approach to the Double Cosets of the Symmetric Group with respect to Young Subgroups , 1996, Eur. J. Comb..
[34] David Deutsch,et al. Machines, logic and quantum physics , 2000, Bull. Symb. Log..
[35] Gregor von Bochmann,et al. Quick Birkhoff-von Neumann Decomposition Algorithm for Agile All-Photonic Network Cores , 2006, 2006 IEEE International Conference on Communications.