Alternative Set Theories
暂无分享,去创建一个
M. Randall Holmes | Thomas E. Forster | Thierry Libert | D. Gabbay | A. Kanamori | J. Woods | Thierry Libert | T. Forster | Richard Holmes
[1] Peter Aczel,et al. Non-well-founded sets , 1988, CSLI lecture notes series.
[2] Willard Van Orman Quine,et al. New Foundations for Mathematical Logic , 1937 .
[3] M. Randall Holmes. The Structure of the Ordinals and the Interpretation of ZF in Double Extension Set Theory , 2005, Stud Logica.
[4] Thierry Libert. Positive Frege and its Scott-style semantics , 2008, Math. Log. Q..
[5] P. Vopenka,et al. Mathematics in the alternative set theory , 1979 .
[6] George Wilmers. CANTORIAN SET THEORY AND LIMITATION OF SIZE: (Oxford Logic Guides 10) , 1989 .
[7] M. Randall Holmes. Paradoxes in Double Extension Set Theories , 2004, Stud Logica.
[8] Frederic Brenton Fitch. An Extension of Basic Logic , 1948, J. Symb. Log..
[9] John R. Myhill,et al. A Type-Free System Extending (ZFC) , 1989, Ann. Pure Appl. Log..
[10] Dennis C Harrison. Form and function , 2012, Canadian Medical Association Journal.
[11] Robert C. Flagg,et al. Implication and analysis in classical frege structures , 1987, Ann. Pure Appl. Log..
[12] William N. Reinhardt,et al. Ackermann's set theory equals ZF , 1970 .
[13] G. Cantor. Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen , 1872 .
[14] W. V. Quine,et al. On ordered pairs , 1945, Journal of Symbolic Logic.
[15] J. Paris,et al. The Type Theoretic Interpretation of Constructive Set Theory , 1978 .
[16] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[17] Colin McLarty. Failure of Cartesian Closedness in NF , 1992, J. Symb. Log..
[18] Robert C. Flagg,et al. K-continuous lattices and comprehension principles for frege structures , 1987, Ann. Pure Appl. Log..
[19] Theodore Hailperin,et al. A set of axioms for logic , 1944, Journal of Symbolic Logic.
[20] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[21] A. R. D. Mathias,et al. The strength of Mac Lane set theory , 2001, Ann. Pure Appl. Log..
[22] R. Jensen. On the Consistency of a Slight (?) Modification of Quine’s New Foundations , 1968 .
[23] Furio Honsell,et al. Choice Principles in Hyperuniverses , 1996, Ann. Pure Appl. Log..
[24] Thoralf Skolem,et al. Investigations on a comprehension axiom without negation in the defining propositional functions , 1960, Notre Dame J. Formal Log..
[25] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[26] Paul Corazza. The wholeness axiom and Laver sequences , 2000, Ann. Pure Appl. Log..
[27] C. Ward Henson. Type-Raising Operations on Cardinal and Ordinal Numbers in Quine's "New Foundations" , 1973, J. Symb. Log..
[28] Michael Hallett. Cantorian set theory and limitation of size , 1984 .
[29] Azriel Levy,et al. On Ackermann's set theory , 1959, Journal of Symbolic Logic.
[30] Leif Arkeryd. Nonstandard Analysis , 2005, Am. Math. Mon..
[31] Thomas E. Forster. Permutations and wellfoundedness: the true meaning of the bizarre arithmetic of Quine's NF , 2006, J. Symb. Log..
[32] Jannis Manakos. On Skala's Set Theory , 1984, Math. Log. Q..
[33] E. Specker. The Axiom of Choice in Quine's New Foundations for Mathematical Logic. , 1953, Proceedings of the National Academy of Sciences of the United States of America.
[34] Marcel Crabbé. On the Consistency of an Impredicative Subsystem of Quine's NF , 1982, J. Symb. Log..
[35] Nino B. Cocchiarella,et al. Frege's double correlation thesis and quine's set theories NF and ML , 1985, J. Philos. Log..
[36] Olivier Esser. On the Consistency of a Positive Theory , 1999, Math. Log. Q..
[37] A. R. D. Mathias. Slim Models of Zermelo Set Theory , 2001, J. Symb. Log..
[38] H. L. Skala. An Alternative Way of Avoiding the Set-Theoretical Paradoxes , 1974 .
[39] Hao Wang,et al. Logic, Computers, and Sets , 1970 .
[40] Furio Honsell,et al. A General Construction of Hyperuniverses , 1996, Theor. Comput. Sci..
[41] H. Friedman. Some applications of Kleene's methods for intuitionistic systems , 1973 .
[42] Kenneth Kunen,et al. Elementary embeddings and infinitary combinatorics , 1971, Journal of Symbolic Logic.
[43] P. Aczel. The Type Theoretic Interpretation of Constructive Set Theory: Choice Principles , 1982 .
[44] C. Kuratowski. Sur la notion de l'ordre dans la Théorie des Ensembles , 1921 .
[45] B. Dahn. Admissible sets and structures , 1978 .
[46] A. R. D. Mathias,et al. NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .
[47] Robert Jones. Elementary set theory with a universal set , 2007 .
[48] M. Randall Holmes,et al. Strong axioms of infinity in NFU , 2001, Journal of Symbolic Logic.
[49] Olivier Esser,et al. On topological set theory , 2005, Math. Log. Q..
[50] G. Boolos,et al. The Iterative Conception of Set , 1971 .
[51] S. Feferman. Enriched Stratified Systems for the Foundations of Category Theory , 2011 .
[52] Thomas E. Forster,et al. Normal subgroups of infinite symmetric groups, with an application to stratified set theory , 2009, J. Symb. Log..
[53] Andrzej Kisielewicz. A Very Strong Set Theory? , 1998, Stud Logica.
[54] Roland Hinnion,et al. Positive abstraction and extensionality , 2003, Journal of Symbolic Logic.