Alternative Set Theories

By “alternative set theories” we mean systems of set theory differing significantly from the dominant ZF (Zermelo-Frankel set theory) and its close relatives (though we will review these systems in the article). Among the systems we will review are typed theories of sets, Zermelo set theory and its variations, New Foundations and related systems, positive set theories, and constructive set theories. An interest in the range of alternative set theories does not presuppose an interest in replacing the dominant set theory with one of the alternatives; acquainting ourselves with foundations of mathematics formulated in terms of an alternative system can be instructive as showing us what any set theory (including the usual one) is supposed to do for us. The study of alternative set theories can dispel a facile identification of “set theory” with “Zermelo-Fraenkel set theory”; they are not the same thing.

[1]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[2]  Willard Van Orman Quine,et al.  New Foundations for Mathematical Logic , 1937 .

[3]  M. Randall Holmes The Structure of the Ordinals and the Interpretation of ZF in Double Extension Set Theory , 2005, Stud Logica.

[4]  Thierry Libert Positive Frege and its Scott-style semantics , 2008, Math. Log. Q..

[5]  P. Vopenka,et al.  Mathematics in the alternative set theory , 1979 .

[6]  George Wilmers CANTORIAN SET THEORY AND LIMITATION OF SIZE: (Oxford Logic Guides 10) , 1989 .

[7]  M. Randall Holmes Paradoxes in Double Extension Set Theories , 2004, Stud Logica.

[8]  Frederic Brenton Fitch An Extension of Basic Logic , 1948, J. Symb. Log..

[9]  John R. Myhill,et al.  A Type-Free System Extending (ZFC) , 1989, Ann. Pure Appl. Log..

[10]  Dennis C Harrison Form and function , 2012, Canadian Medical Association Journal.

[11]  Robert C. Flagg,et al.  Implication and analysis in classical frege structures , 1987, Ann. Pure Appl. Log..

[12]  William N. Reinhardt,et al.  Ackermann's set theory equals ZF , 1970 .

[13]  G. Cantor Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen , 1872 .

[14]  W. V. Quine,et al.  On ordered pairs , 1945, Journal of Symbolic Logic.

[15]  J. Paris,et al.  The Type Theoretic Interpretation of Constructive Set Theory , 1978 .

[16]  R. H.,et al.  The Principles of Mathematics , 1903, Nature.

[17]  Colin McLarty Failure of Cartesian Closedness in NF , 1992, J. Symb. Log..

[18]  Robert C. Flagg,et al.  K-continuous lattices and comprehension principles for frege structures , 1987, Ann. Pure Appl. Log..

[19]  Theodore Hailperin,et al.  A set of axioms for logic , 1944, Journal of Symbolic Logic.

[20]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[21]  A. R. D. Mathias,et al.  The strength of Mac Lane set theory , 2001, Ann. Pure Appl. Log..

[22]  R. Jensen On the Consistency of a Slight (?) Modification of Quine’s New Foundations , 1968 .

[23]  Furio Honsell,et al.  Choice Principles in Hyperuniverses , 1996, Ann. Pure Appl. Log..

[24]  Thoralf Skolem,et al.  Investigations on a comprehension axiom without negation in the defining propositional functions , 1960, Notre Dame J. Formal Log..

[25]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[26]  Paul Corazza The wholeness axiom and Laver sequences , 2000, Ann. Pure Appl. Log..

[27]  C. Ward Henson Type-Raising Operations on Cardinal and Ordinal Numbers in Quine's "New Foundations" , 1973, J. Symb. Log..

[28]  Michael Hallett Cantorian set theory and limitation of size , 1984 .

[29]  Azriel Levy,et al.  On Ackermann's set theory , 1959, Journal of Symbolic Logic.

[30]  Leif Arkeryd Nonstandard Analysis , 2005, Am. Math. Mon..

[31]  Thomas E. Forster Permutations and wellfoundedness: the true meaning of the bizarre arithmetic of Quine's NF , 2006, J. Symb. Log..

[32]  Jannis Manakos On Skala's Set Theory , 1984, Math. Log. Q..

[33]  E. Specker The Axiom of Choice in Quine's New Foundations for Mathematical Logic. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Marcel Crabbé On the Consistency of an Impredicative Subsystem of Quine's NF , 1982, J. Symb. Log..

[35]  Nino B. Cocchiarella,et al.  Frege's double correlation thesis and quine's set theories NF and ML , 1985, J. Philos. Log..

[36]  Olivier Esser On the Consistency of a Positive Theory , 1999, Math. Log. Q..

[37]  A. R. D. Mathias Slim Models of Zermelo Set Theory , 2001, J. Symb. Log..

[38]  H. L. Skala An Alternative Way of Avoiding the Set-Theoretical Paradoxes , 1974 .

[39]  Hao Wang,et al.  Logic, Computers, and Sets , 1970 .

[40]  Furio Honsell,et al.  A General Construction of Hyperuniverses , 1996, Theor. Comput. Sci..

[41]  H. Friedman Some applications of Kleene's methods for intuitionistic systems , 1973 .

[42]  Kenneth Kunen,et al.  Elementary embeddings and infinitary combinatorics , 1971, Journal of Symbolic Logic.

[43]  P. Aczel The Type Theoretic Interpretation of Constructive Set Theory: Choice Principles , 1982 .

[44]  C. Kuratowski Sur la notion de l'ordre dans la Théorie des Ensembles , 1921 .

[45]  B. Dahn Admissible sets and structures , 1978 .

[46]  A. R. D. Mathias,et al.  NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .

[47]  Robert Jones Elementary set theory with a universal set , 2007 .

[48]  M. Randall Holmes,et al.  Strong axioms of infinity in NFU , 2001, Journal of Symbolic Logic.

[49]  Olivier Esser,et al.  On topological set theory , 2005, Math. Log. Q..

[50]  G. Boolos,et al.  The Iterative Conception of Set , 1971 .

[51]  S. Feferman Enriched Stratified Systems for the Foundations of Category Theory , 2011 .

[52]  Thomas E. Forster,et al.  Normal subgroups of infinite symmetric groups, with an application to stratified set theory , 2009, J. Symb. Log..

[53]  Andrzej Kisielewicz A Very Strong Set Theory? , 1998, Stud Logica.

[54]  Roland Hinnion,et al.  Positive abstraction and extensionality , 2003, Journal of Symbolic Logic.